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ABSTRACT
The ability to discover all content relevant to an information do-
main has many applications, from helping in the understanding of
humanitarian crises to countering human and arms trafficking. In
such applications, time is of essence: it is crucial to both maximize
coverage and identify new content as soon as it becomes available,
so that appropriate actions can be taken. In this paper, we propose
new methods for efficient domain-specific re-crawling that maxi-
mize the yield for new content. By learning patterns of pages that
have a high yield, our methods select a small set of pages that can
be re-crawled frequently, increasing the coverage and freshness
while conserving resources. Unlike previous approaches to this
problem, our methods combine different factors to optimize the
re-crawling strategy, do not require full snapshots for the learning
step, and dynamically adapt the strategy as the crawl progresses. In
an empirical evaluation, we have simulated the framework over 600
partial crawl snapshots in three different domains. The results show
that our approach can achieve 150% higher coverage compared to
existing, state-of-the-art techniques. In addition, it is also able to
capture 80% of new relevant content within less than 4 hours of
publication.
ACM Reference Format:
Kien Pham, Aécio Santos, and Juliana Freire. 2018. Learning to Discover
Domain-Specific Web Content. In WSDM 2018: The Eleventh ACM Inter-
national Conference on Web Search and Data Mining, February 5–9, 2018,
Marina Del Rey, CA, USA. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3159652.3159724

1 INTRODUCTION
The wide availability of data on the Web has enabled many new
applications in different types of organizations, from government
agencies and NGOs, to research universities and tech start-ups.
Consider for example, the problem of human trafficking. It is esti-
mated that 63% of sex trafficking victims are advertised online [6].
Analysts at NGOs and law enforcement agencies continuously mon-
itor escort ads posted online to detect traffickers and more quickly
rescue the victims. At the Bureau of Alcohol, Tobacco, Firearms and
Explosives (ATF), agents surveil online markets where guns and
drugs are sold to generate investigation leads as well as forensic
evidence to prosecute criminals. Similarly, organizations that fight
against illegal trading of wildlife track online marketplaces such as
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ebay.com to identify illegal products and obtain evidence to prose-
cute traffickers [20]. As a point of reference, in 2012 one operation
by the US Fish andWildlife Service (FWS) resulted in 154 busts of il-
legal wildlife goods on theWeb [9]. Humanitarian aid organizations
need to assess the nature and magnitude of major humanitarian
crises around the world in order to prioritize the responses to them.
In the early stages of an emergency, they crucially rely on analysis
of secondary data (i.e., primary data that is processed by local and
international public institutions, non-governmental organizations
and news media) collected from the Web [5].

In these applications, the goal is to find all pages relevant to a
given domain continuously and in a timely fashion. But doing so
is difficult. Search engines, such as Google and Bing, are the main
tools for users looking for information on the Web. They make
use of massive computing power to both crawl the Web and create
the indexes, which currently cover hundreds of billions of docu-
ments. These systems, however, have limitations when faced with
domain-specific information needs. Because they aim to maximize
coverage and breadth, queries often return a very large number of
results, including many that are of little relevance. For example, a
law enforcement agent searching for “escort ads” will find links to
escort sites but also many links to news sites, which do not con-
tain ads. While it is possible to issue more specific queries such
as “site:newyork.backpage.com/WomenSeekMen”, which retrieve
pages in a dating section of Backpage, there is no guarantee that all
pages will be retrieved. Due to resource limitations, search engines
often do not download all the pages in each site they encounter.
Pruning techniques are used and pages that are important for a
domain may be overlooked. In addition, to cover a given domain, a
potentially large number of queries need to be issued. In the case
of Backpage, to retrieve all escort ads, at least one query per city is
needed; and there are many more sites that contain ads in addition
to Backpage. Because of the rate limits search engines impose, users
may not be able to retrieve even the ads that are in their indexes.

The ideal would be to construct an index that provides compre-
hensive coverage of a given domain and that is kept up to date:
as new pages become available, they are automatically added to
the index. Focused crawlers can be used to discover pages that are
relevant to a domain [7]. These systems collect pages that satisfy a
set of properties and carefully prioritize the crawl frontier to maxi-
mize the number of relevant pages discovered while minimizing
the number of off-topic pages visited. But continuously crawling to
discover new content is difficult and expensive. Consider again the
human trafficking domain. Thorn1 estimates that over 100,000 new
escort ads are posted online everyday in a plethora of Web sites –
Backpage alone has millions of ads. For users and organizations in
the long tail, with limited computational resources, constantly and
exhaustively re-crawling all known Web sites is not practical.

1Thorn is an international anti-human trafficking organization that works to address
the sexual exploitation of children.
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(a) Human Trafficking domain (b) Politics domain (c) Humanitarian Crisis domain

Figure 1: Number of new pages published hourly

Recognizing this problem, approaches have been proposed to
make this task more efficient by reducing the number of re-crawled
pages while still discovering a large percentage of new pages. Das-
gupta et al. [13] estimate that 90% of all new content can be discov-
ered by re-crawling a carefully chosen set of existing pages. They
modeled the Web as graph and computed the vertex cover in order
to identify a set of pages that can lead to the discovery of links
to new pages over time. The selected pages are then periodically
re-crawled. Unfortunately, applying this approach to discover new
content in a timely manner creates new challenges. Re-crawling
these selected pages frequently (e.g., hourly or daily) is not practical
due to bandwidth limits, standard politeness constraints crawlers
must adhere to, and the cost of computing resources. Also, lesser-
known web crawlers (i.e., which are not associated to major search
engines) are sometimes blocked when detected by sites [23], which
do not have incentives to spend resources serving pages to crawlers
that do not generate user traffic. Another challenge comes from the
fact that pages from different domains can have very different pub-
lishing rates [25] and even within a fixed domain, these rates may
change over time. This is illustrated in Figure 1 which shows how
the number of new links discovered varies depending on different
factors such as hour of the day, day of the week, and domain.
Timely Discovery of Domain-Specific Content. In this paper
we focus on the problem of timely discovery of new content in a
domain-specific setting. More formally, we define the content dis-
covery problem as follows: given a set of seed pages S and we want
to select the top-k pages Stk for every timestamp t , where Stk ⊂ S

and |Stk | ≪ |S |, such that re-crawling every Stk at a timestamp t

maximizes the number of new (relevant) links discovered. We as-
sume that new content can be discovered by re-crawling previously
crawled pages, but instead of crawling them periodically using a
fixed schedule, we propose new algorithms that learn and leverage
page change patterns to dynamically derive efficient re-crawl sched-
ules that optimize the new content discovery rate over time. Unlike
previous approaches which assumed the crawler has full knowledge
of how pages change over time [13, 15], we dynamically learn them
as the crawl proceeds and more knowlege about pages is acquired.

We propose a two-stage framework to generate dynamic re-crawl
schedules. In the first phase, we predict the number of new outlinks
ô that the page will yield at time t + 1 and use the prediction to
select a set of candidate pages. To do so, we identify a set of useful
features that are good predictors for pages that lead to a high yield

(i.e., are likely to contain links to new pages) and use machine-
learning based algorithms that combine these features to estimate ô.
Because different pages may share links, selecting pages that have
high yield but whose link sets overlap would negatively impact
the overall performance. Thus, during the second phase, we rank
the candidate pages taking into account not only the estimated
number of new links, but also the estimated overlap among the
sets of outlinks in the associated pages. Given a pair of pages, to
efficiently estimate the overlap between their links, we propose a
new algorithm that takes into account a realistic crawler scenario
where only incomplete information is available, i.e., information
from the top-k pages crawled in previous re-crawling cycles.

While the greedy, learning-based approach is effective, it may
suffer from bias: by selecting only pages that are expected to have
high-yield, it may miss new pages could lead to higher yields. A
common approach to this problem is to introduce exploration: in-
stead of just exploiting known seeds, we can explore to find (and
learn the patterns from) new seeds. The challenge is how balance
exploration and exploitation. We propose a method that uses the
multi-armed bandits strategy [2] to automatically select an explo-
ration threshold and to dynamically adapt the threshold as the
crawl progresses.

To assess the effectiveness and efficiency of the proposed ap-
proach, we performed a detailed experimental evaluation to com-
pare it against state-of-the-art discovery techniques using real data
from different domains. The results show that the features we se-
lected and the strategy used to combine them lead to effective pre-
dictors of page yield. By learning these features and taking the over-
lap into account, our algorithm outperforms all other approaches:
it achieves higher coverage using less resources. In addition, by
balancing exploration and exploitation, higher coverage is attained.
Contributions. Our main contributions are as follows:
• We approach content discovery as a ranking problem, where the
crawling policy needs to select the top-k best seed pages to be
re-crawled at every timestamp t to maximize the total number
of new pages discovered. To the best of our knowledge, ours is
the first attempt to consider this problem in a domain-specific
setting.
• We propose a method to generate dynamic re-crawling sched-
ules that predicts the estimated number of new outlinks ô the
page will yield at time t + 1 and that also takes the estimated
overlap of outlinks into account. We also show that by using



the multi-armed bandits algorithm to automatically balance
the tradeoff between exploitation and exploration, our method
attains improved coverage.
• We perform extensive experiments to evaluate the proposed
approach and compare it against the state-of-the-art methods.
The results show improvements up to 150% higher coverage
compared to state-of-the-art techniques.

2 RELATEDWORK
There is a significant body of work related to re-crawling web pages.
Problems addressed include the characterization of the temporal
dynamics and evolution of the Web [1, 3, 13, 19], maintenance of
overall freshness of crawled content [11, 21, 25–27], and discovery
of new links (content) [13–16]. We focus on the latter, and in par-
ticular, on timely content discovery in specific domains, a problem
that, to the best of our knowledge, has not been tackled before.
Domain-specific content discovery has been considered in the con-
text of focused crawlers [7], where the goal is to find pages whose
content is relevant to a given domain.
Temporal Dynamics and Evolution. The temporal dynamics
and evolution of Web content has been studied in [1, 3, 13, 19].
Ntoulas et al. [19] observed that web pages are created and retired
at a fast pace. Olston and Pandey [21] studied the longevity of
information found in web pages and proposed re-crawl scheduling
policies that allow crawlers to target persistent content, instead of
ephemeral content that will be quickly overwritten by subsequent
changes. Adar et al. [1] studied how Web content changes both
with respect to time intervals (hourly and sub-hourly crawls) and
the page structure (content, DOM tree and terms). Bar-Yossef [3]
studied the decay of theWeb and showed that not only do some web
pages exhibit a rapid death but also large sub-graphs of the Web
decay significantly. For applications, such as the ones discussed in
Section 1, that aim to achieve large coverage of a domain over time,
this underscores the importance of discovering pages fast so that
they can be properly archived before they disappear.
Re-Crawling for Content Freshness. Coffman et al. [10] were
one of the first to study the problem of re-crawling, and postulated
that web page change events follow a Poisson process: changes
occur randomly and independently. Considering the Poisson model,
Cho and Garcia-Molina [8] proposed efficient change frequency
estimators for various scenarios, including the web crawling sce-
nario in which information about all change events is not available.
Other works observed that features extracted from the content of
web pages, web link structure, and web search logs can be used
to effectively predict change patterns [4, 24, 28]. Barbosa et al. [4]
were the first to exploit the use of static features extracted from the
content of a page to predict its change behavior. Based on this idea,
Tan and Mitra [28] proposed the use of new dynamic features, and
other features extracted from the web link structure and web search
logs to group pages with similar change behavior. Radinsky and
Bennett [24] went a step further and proposed a change prediction
framework that uses not only features from the content, but also
the degree and relationship among the observed changes to a page,
the relatedness to other pages, and the similarity of changes. Santos
et al. [26, 27] proposed the use of ranking-based re-crawling strate-
gies for scheduling web page updates. They described a genetic

programming framework to generate ranking functions to select
the top-k best pages to be re-crawled. This line of work differs
from our work in the sense that their goal is to maintain overall
freshness, whereas in here we aim to discover new content. We
follow a ranking-based approach as in [26, 27], but with different
machine learning methods and objectives.
Re-crawling forContentDiscovery. Dasgupta et al. [13] studied
the extent to which new pages can be efficiently discovered. They
observed that by re-crawling a subset of existing pages, it is possible
to discover a large portion of the newly generated content. Another
important finding in their work was that a large number of page
pairs share outlinks to new content: if only pages within a web site
are considered, more than 20% of pages have Jaccard coefficient
very close to 0 (i.e., they do not share any links) and more than
40% have a Jaccard coefficient very close to 1 (i.e., they have the
same links). They proposed algorithms for selecting a small subset
of pages that can be re-crawled in order to efficiently discover new
content. The algorithms assume that full snapshots of the content
is available. However, for scenarios where resources are limited,
constructing full snapshots may not be possible. In contrast, our
approach does not assume complete information is available and
dynamically learns patterns as information becomes available.

Kumar et al. [15] studied the problem of discovery for pages
with a high number of incoming links. They presented different
policies to select pages for re-crawling based on multiple page
scoring strategies such as the yield (number of links not present in
the previous crawl of that page divided by the time since the prior
crawl) and the link score (the number of inlinks of the discovered
pages). Other policies select pages with probability proportional
to the number of total inlinks, new outlinks, or both. In summary,
all proposed policies try to maximize discovery of high in-degree
pages and only leverage the link structure of the Web, whereas our
approach aims to maximize full content coverage and does so by
using additional features to learning efficient re-crawling policies.

Gupta et al. [14] proposed techniques to schedule the re-crawling
of a given set of seed pages to discover news headlines. Given the
crawling frequency per day as a resource constraint, they proposed
a technique that monitors each news source for a particular time
period to collect the news update patterns, and then analyzes them
using mixed integer programming to discover the optimal crawling
schedule that maximizes accuracy. In another variation of the prob-
lem, they optimized the crawling frequency and the corresponding
crawling schedule for a desired accuracy level. While Gupta et al.
aim to find an optimal fixed schedule for each page, our approach is
adaptive. We automatically learn a crawling policy that is applied at
each timestamp to select the pages that should be crawled in order
to maximize coverage. We do not assume that pages are monitored
during a particular time, instead, the patterns are learned dynami-
cally as more information becomes available. Furthermore, since
their seed pages were selected manually, they ignore the fact that
different pages may share outlinks to new content. This overlap can
negatively affect the overall performance of the crawling policy. As
we discuss in Section 4, our approach takes overlap into account.

Lefortier et al. [16] studied the problem of crawling popular pages
(in terms of user interest) in a timely fashion. They showed that
page popularity changes over time and many pages follow a pattern
where the popularity decays quickly. They propose strategies for



holistic crawling which aim to attain a balance between crawling
newly discovered links or re-crawling previously crawled pages
(content sources). One of their best-performing strategies crawls
content sources with priority that is proportional to the new link
discovery rate, the popularity of the discovered pages, and the time
since last crawl; to interleave downloads of content sources and
newly discovered links, it simply crawls new links immediately after
their discovery. In this work, we focus on the problem of scheduling
when content sources should be re-crawled, but our approach can
be easily extended to crawl all new links right after discovery. In
addition, while Lefortier et al. [16] optimize discovery of popular
pages based on search engine click logs, our main motivation is to
obtain full coverage of a given domain.

3 PROBLEM FORMULATION
Let S be the set of n seed pages chosen for re-crawling and T =
t0, t1, ..., t∞ be the discrete representation of timestamps for the re-
crawling cycles. LetOt (s) denote a set of new pages discovered from
s ∈ S at the time t ∈ T . The set of all pages discovered from the seed
pages is O =

⋃
t ∈T Ot . Let r : O → 0, 1 be a function indicating

the relevance of a page in O with respect to the domain D:

r (o) =

{
1 if o ∈ D
0 if o < D

At each timestamp t , letU t
k be the set of distinct pages discovered

from k seed pages Stk ⊂ S for the first time:

U t
k =

⋃
s ∈S tk

Ot (s)

Rt (Stk ) denotes the number of distinct pages discovered from Stk
that are relevant to domain D at time t :

Rt (Stk ) =
∑

p∈U t (S tk )

r (p)

At each timestamp t , and given the information obtained from prior
crawls Ot ′ , where t ′ < t , we would like to select Stk such that
re-crawling Stk maximizes the cummulative Rt (Stk ) over time:

Ck =
∑
t ∈T

Rt (Stk )

We use Coveraдe to measure the efficiency of a selection strategy:

Coveraдe =
Ck
Cn

whereCn is total number of relevant pages that can be discovered if
all seed pages are recrawled at each timestamp. Note thatCoveraдe
captures the percentage of relevant pages discovered over time,
and if all discovered pages are considered relevant (i.e., O ⊆ D and
∀o : r (o) = 1), the problem is reduced to the general non-focused
crawling setting, which we also consider in our evaluation.

4 ONLINE RE-CRAWLING FRAMEWORK
Unlike previously-proposed scheduling algorithms that require
complete past crawls, we propose a method that learns from tem-
poral features derived from multiple incomplete historical crawls.
Below, we give an overview of the framework and then present our
approach to prediction as well as how we balance exploration and
exploitation during the re-crawling process to increase coverage.

4.1 Approach Overview
As outlined in Algorithm 1, our approach works in an iterative
fashion. First, it builds a model (line 5) that, given a page P , predicts
the number of new relevant links P will yield. Then, using this
model (Predictor ), it selects a small subset Stk of the seed pages S
(line 6) to be crawled (in line 7) that maximizes the Coveraдe over
time, i.e., Stk will yield a large number of new outlinks Ot (Stk ) if
crawled at time t . Finally, based on the retrieved data, historical
information is updated (lines 8-9) which will be used in subsequent
iterations.

As discussed in Section 1, pages from different domains can
have very different change rates [25]. Indeed, our experiments (see
Section 5.2) confirm not only that, but also show that these rates
change over time and depend on different factors. To tackle this
problem, we apply learning algorithms to train a Predictor that
uncovers such patterns from data obtained in previous re-crawling
cycles (stored in HIST ) and effectively predicts link yields. Thus,
HIST needs to maintain the information Ot ′ obtained from prior
re-crawling cycles t ′, where t ′ < t , as well as the relevance of all
discovered pages with respect to domainD (line 9). This information
can then be used to generate features for the prediction (Section 4.2).

However, a significant fraction of page pairs have overlapping
outlink sets [13]. Thus, if we greedly consider pages that lead to a
high yield in isolation, we are likely to waste resources: if the pages
selected have a large overlap, the overall yieldwill be low. To address
this problem, we take overlap into account: if two seed pages are
predicted to have a high yield but also have a high estimated overlap,
only one should be selected for re-crawling. Since overlap can
change over time, the overlap estimates must be updated regularly.
In the previous approach [13], the overlap could be computedwithin
a single snapshot from the most recent crawl since all seed pages
are scheduled to be re-crawled at every timestamp. However, in
our setting, only small subset of seed pages is re-crawled, therefore
only O(Sk ) is available rather than O(S). As a result, we need to
estimate the overlap differently. To update SIM (line 8), we compute
all pair-wise similarities between selected seed pages in Sk . Note
that |Sk | ≪ |S | and we only need to compute the similarity between
pages that are in the same web site, which significantly reduces the
number of pairs to compute.

To measure the overlap between two pages p and q, we use the
Jaccard similarity:

Jaccard(p,q) =
|O(p) ∩O(q)|

|O(p) ∪O(q)|

Algorithm 2 details the page selection function. First, the predic-
tor is applied to all pages to estimate the number of new outlinks
that can be discovered from the seed pages (lines 2-5). Next, a greedy
selection is performed over the candidate pages, taking into account
the overlap estimate from the most recent crawls (lines 6-11).

4.2 Predicting New Outlinks
Given the information O0(S0k ),O

1(S1k ), ...,O
t ′(St

′

k ) collected during
previous crawls, we need to predict the number of new pages discov-
ered by re-crawling each seed page s ∈ S at the timestamp t , where
t > t ′. We define the temporal prediction function as: f : S×T → R
and the set of temporal training examplesX = {x0,x1, ...,xt ′}, such
that xti contains set of training examples obtained by re-crawling



Algorithm 1 Online Re-Crawling

1: procedure Online_Recrawl(k)
2: HIST = ∅
3: SIM = ∅
4: for t ∈ T do
5: Predictor ← Train a model with HIST
6: Stk = Select(k, t , Predictor , SIM)

7: Ot (Stk ) ← Crawl(Stk ) ▷ Crawl seed pages and new
outlinks

8: Update SIM with Ot (Stk )

9: Update HIST with Ot (Stk )

10: end for
11: end procedure

Algorithm 2 Select Top-k Seed Pages

1: function Select(k , t , Predictor , SIM)
2: Candidates = { Seed Pages }
3: for p ∈ Candidates do
4: Ep = Predictor .predict(p, t)
5: end for
6: Sk = ∅
7: for 1 to k do
8: Select p in Candidates that has highest Ep
9: Remove all q from Candidates , where SIM[p,q] > ξ
10: Stk ← Stk ∪ p

11: end for
12: return Stk
13: end function

selected seed pages at timestamp ti . Each seed page s that was
re-crawled is represented as one training example:

〈
F (s, t), |Ot (s)|

〉
,

where F (s, t) is the featurization function that transforms a page
into a single vector and |Ot (s)| is the number of new relevant pages
yielded by s at timestamp t .
Features. We consider features that capture temporal content
creation patterns. Note, however, that other features types (e.g.,
content and URL, etc) can be easily integrated into our framework.
We leave this for future work. Each page re-crawled at timestamp t
is converted into a single vector resulting from the concatenation
of the fetures described below.
avд: Average number of new pages discovered from s in the past
crawls. In order to limit the size of the data stored and to prioritize
the recent page history, we compute this feature considering only a
window of sizew . For example, forw = 10, we compute avд using
the number of discovered pages from the last 10 previous crawls.
std : Standard deviation of the number of new pages discovered from
s in the past crawls. This feature captures the variance of the avд
value. As in avд, we compute std within a window sizew .
aдe : Time since the seed page s was last re-crawled. This feature aims
to prioritize older seeds. The intuition is that if a seed page has not
been re-crawled recently, it is more likely it contains previously
unseen outlinks.
tod : Time of the day of the timestamp t . This feature takes a value
from 0 to 23. We treat this value as the categorical feature and use
one-hot encoding to represent it. The rationale for this feature is

that some pages may have higher probability of creating new links
during speficic times of the day (e.g., day or night).
dow : Day of the week of the timestamp of the next crawling cycle.
This feature takes value from 0 to 6, corresponding to each day of
the week (Monday is 0 and Sunday is 6). As in tod , we use one-hot
encoding to represent this feature, and the rationale is that some
pages may create more links during specific days of the week (e.g.,
during weekends).aa = avд∗aдe : Reinforcement of greedy strategy.
This feature gives higher priority to pages that generate more new
links on average and have not been crawled for a long time. It
also introduces non-linearity that would not be possible for simple
linear algorithms to learn otherwise.
Learning Algorithms. Multiple learning methods can be used to
map the features into predictions. Since we are trying to predict
a number (the number of new outlinks), regression algorithms
are a natural choice for this task. In practice, the actual predicted
number is used only for ranking the pages. Therefore, learning to
rank (LTR) [17] is another class of algorithms suitable for this task.
In Section 5, we present an experimental evaluation of these two
classes of algorithms for our problem.

4.3 Balancing Exploitation and Exploration
Since Algorithm 2 performs a greedy selection, it naturally favors
seed pages that are known to be good. This can introduce bias in
the estimator, which by learning just from this group may end
up missing other, different seed pages that have high yield in the
future, and consequently, will fail to capture their patterns. To
address this problem, we propose a strategy to balance exploitation
and exploration using multi-armed bandits (MAB) [2], which is
known to be an effective means of solving such trade-off problems.
The MAB algorithm operates as follows: at each timestamp t , we
choose one of a set of arms available. Then, we observe the reward
obtained by choosing that arm. The goal is to select arms such that
the cumulative reward over time is maximized. One intuitive way to
apply this method in our setting is to model two selection methods
as arms, one which favors exploitation and another that favors
exploration, and then select one arm at each re-crawling cycle.
However, since exploration generally yields much lower coverage
than exploitation, this causes the MAB algorithm quickly coverge
and therefore rarely select the explorative method. As a result, we
observed that the coverage obtained by this strategy is no different
than using solely exploitation. Instead, we combine exploration
and exploitation using a ratio r , i.e., we select r% of the seed pages
using a greedy strategy (such as Algorithm 2), and (1 − r )% using a
strategy that favors exploration. Then, we model the arms as a finite
list of ratios between 0.0 and 1.0 and apply the UCB1 algorithm [2]
to choose the ratio to be used at each timestamp t . This strategy is
detailed in Algorithm 3. Finally, after we crawl the selected pages
we use the average number of discovered new outlinks over time
by the choosen ratio as reward.

5 EXPERIMENTAL EVALUATION
We demonstrate the effectiveness of our re-crawling framework
and prediction methods through extensive experiments using real-
world datasets. To create a controlled environment in which we
can accurately compare different strategies and avoid confound-
ing factors that arise due to the dynamic nature of the Web, we



Algorithm 3 Balancing Exploitation and Exploration

1: function Bandit_Select(k , t , Predictor , SIM)
2: ratio = UCB1.select_arm()
3: k1 = ratio ∗ k
4: k2 = k − k1
5: TopK1 = Select(k1, t , Predictor , SIM)
6: TopK2 = Select k2 pages using exploration strategy
7: TopK = TopK1 ∪TopK2
8: return TopK
9: end function

collected data from three different domains to serve as the ground
truth. Using these data, we compared the coverage attained by our
approach against the state of the art in re-crawling in both focused
and non-focused settings. In the focused setting, we assume that
the page classifier is available during the re-crawling process, while
in the non-focused setting it is not. The non-focused setting reflects
the scenario when the page classifier is not available and one wants
to re-crawl all pages from a number of specific web sites that are
considered fully relevant to the domain. We also verified the benefit
of balancing exploration and exploitation, and the ability of our
approach to discover new content in timely fashion.

5.1 Data Collection
To gather the ground truth data for carrying out the re-crawling
experiments, we selected the following domains:
• Politics: represents news articles and blog posts that are related
to politics.
• Human trafficking: represents adult ads from classified ads,
escort, and related sites.
• Humanitarian crisis: contains reports about disasters that threaten
human life from NGOs and news sites.

We selected these domains for two main reasons: they are very
different in nature – this is confirmed in the different behaviors
observed in our experimental analysis; andwe had access to training
examples, labeled by subject matter experts, which are critical to
train a classifier required to test the relevance of the crawled pages.

For each domain, we selected the seed pages as follows. First,
we fired a focused crawl using the ACHE open-source crawler2
and retrieved between 200K to 500K pages. Note that each crawl
makes use of a classifier pre-trained for the respective domain. We
then sorted all pages based on the number of relevant outlinks they
contain and selected pages with the highest number of outlinks,
while at the same time, avoiding gathering too many pages from
the same site. Besides covering a larger number of sites, we need
to limit the number of pages per site so that it is possible to obtain
full snapshots in hourly intervals. This also reduces the risk of the
crawler being blocked by the target web sites. For our experiments,
by setting the page limit to 10 in politics domain and 50 in hu-
man trafficking and humanitarian crisis domain, we can create full
snapshots hourly.

The ground-truth data was obtained by crawling all seed pages
and the new pages from their outlinks (i.e., ones that were not
discovered in previous crawls) hourly during a 1-month period.
From the crawled data, we extracted in-site outlinks from the HTML

2http://github.com/ViDA-NYU/ache

Table 1: Statistics of the collected data

Human
Trafficking

Politics
Hum.
Crisis

# seed pages 8543 17892 3480
# seed sites 2215 3524 96

average # pages per site 2.59 5.07 36.25
# discovered pages 2,012,764 682,845 43,012

# discovered relevant pages 1,004,075 243,482 18,532

source of each seed page and ran the page classifiers to assess the
relevance of pages linked by these outlinks. Table 1 summarizes
the statistics of the collected data.

5.2 Discoverability Patterns
We obtained 665, 632, and 741 snapshots for human trafficking,
humanitarian crisis and politics domains respectively. The total
size of these data is roughly 2.7TB uncompressed. To better un-
derstand the patterns associated with the discoverability of new
pages, we examined the number of new pages discovered at each
re-crawling cycle. Figure 1 shows the number of new pages and
new relevant pages that are directly reachable from the seed pages
in the three domains. The figures clearly show that percentage of
relevant pages among new pages is small, which underscores the
importance of optimizing the selection strategies with respect to
relevant pages. In all domains, the following pattern is observed: the
number of new links starts to drop in the beginning and then stabi-
lizes after the first 50 hours of the crawls. We initially hypothesized
that the drop was due to the crawler being blocked by sites. But
after inspecting the logs, we found that the number of successful
requests to seed pages remains stable even at the beginning of the
process. The actual reason for the drop is that this set of discovered
pages already existed before the start of our crawl, and were only
gradualy discovered over time after they appear in the monitored
seed pages. The steeper decline in the human trafficking domain
reveals that pages from the past tend to appear more often. Note
that the decline for new relevant pages is less steep, suggesting
that irrelevant pages (e.g., boilerplate ads) are more likely to appear
repeatedly. In the plots, we also observe repeating valleys and peaks.
These correspond to daily and weekly patterns, which indicate the
importance of capturing the temporal features (time of the day and
day of the week) described in Section 4.2.

5.3 Comparing Selection Strategies
We compare our approach with several crawling strategies. The
Round Robin (RR) strategy selects seed pages that have the highest
aдe (time since last crawl). It is a uniform strategy that guarantees
that all pages are re-crawled once every n/k re-crawling cycles,
where n is the number of seed pages. We also compare to the
upper-bound greedy algorithm (GREEDY ) from [13], which greedily
selects the best pages with foreknowlege of all outlinks Ot (S) and
taking the overlap into account. It is unrealistic since it assumes
full knowledge ofOt (S) before crawling S at time t , but it serves as
an approximation of the ideal upper bound coverage. The strategies
OD-WIN, CLIQ-WIN* and COV* are variants of the algorithms
proposed in [13]. We use * in a algorithm name to denote that the



original algorithm needed to be slightly modified to be applicable
in our problem setting. In what follows, we explain each of them.
OD-WIN : This algorithm selects the top-k seed pages with the
highest average of new relevant pages discovered in the past crawls.
COV*: The original algorithmCOV is the realistic version ofGREEDY,
which utilizesOt−1(S) for selecting seed pages at timestamp t . How-
ever, in our setting we only crawl k pages at each timestamp t , then
only Ot−1(St−1k ) is available. One solution for this is to merge the
set of outlinks from all past crawls as follows: for each page s ∈ S , let
Ôt−1(s) =

⋃
t ′<t O

t ′(s), where t ′ < t . Then we apply the GREEDY
algorithm, but using only past information Ôt−1(S).
CLIQ-WIN*: In its original form, the algorithm groups pages based
on the overlap identified in the most recent re-crawl, and then picks
one representative page from each group, starting from the one with
highest estimated number of new pages. The estimation is done by
computing the average number of new relevant pages discovered
in the past crawls. To make this work in our setting, where all past
re-crawls are incomplete, we first compute the overlap as described
in Section 4. Then, we use this information to form groups and pick
only one page from each group.
Prediction-Based Methods. We evaluate our framework (Sec-
tion 4) using four different configurations:
REG: In this strategy we apply the Algorithms 1 and 2 described
in Section 4, and use linear regression to train the Predictor . Note
that we do not use exploration in this method.
LTR: This strategy is similar to REG, but instead of linear regression,
it applies learning-to-rank. More specificaly, we represent a training
example as

〈
F (s, t), loд(1 + |Ot (s)|),qid

〉
, where loд(1 + |Ot (s)|) is

the relevance of the document and qid is the query. We set the
qid to be equal to the timestamp t when the training example was
created.
BANDIT : This method uses the bandit algorithm described in Sec-
tion 4.3 to choose the ratio between REG and RR.
REG-RR: To evaluate the benefit of using the bandits algorithm, we
also experiment with a strategy that combines REG and RR using a
fixed ratio. We fix the ratio between REG and RR to be 0.9, which
we empirically found to be the best in humanitarian crisis domain.
We pick REG over LTR to combine with RR and BANDIT due to its
better speed and coverage performance as shown later.
Implementation Details. Any available machine learning toolkit
to learn the predictor described in Section 4.2; for our experiments,
we used scikit-learn [22]. To learn a regression-based predictor, we
considered three options: Gradient Boosting Decision Trees (GBDT),
Linear Regression (LR), and Polynomial Regression (PR). However,
we observed no significant improvement by using PR and GBDT
over LR, therefore we only show the results obtained using LR.
To construct a learning-to-rank-based predictor, we use RankLib
[12] and therefore have multiple algorithm options. We picked
Coordinate Ascent [18] over others to show in the final results due
to its superior performance. In all re-crawl simulations using REG,
REG-RR, BANDIT and LTR, we use OD-WIN method during the first
10 hours to bootstrap the training data. We set window sizew to 168
hours (7 days) so that the predictor only learns from most recent
crawls without losing the daily and hourly patterns. The predictor
is re-trained every 3 hours to reduce the computation time. We set
ξ in the Algorithm 2 to 0.7. We set k to 50, 400, 500 in humanitarian

Table 2: Coverage of selection methods in a focused setting

Human
Trafficking

Politics
Humanitarian

Crisis

RR 0.179 0.368 0.391
OD-WIN 0.890 0.546 0.473
COV* 0.829 0.393 0.465
CLIQ-WIN* 0.859 0.538 0.465
REG 0.929 0.805 0.714
REG-RR 0.922 0.807 0.723
BANDIT 0.921 0.808 0.735
LTR 0.924 0.804 0.724

crisis, human trafficking and politics domain respectively. We pick
the k close to the minimal value that the GREEDY method can
obtain 100% coverage. For the BANDIT method, we choose the set
of possible ratio values as {0.6, 0.7, 0.8, 0.9, 1.0}. We intentionally
omit values smaller than 0.6 to force the algorithm to always favor
exploitation over the exploration. Ideally, the bandit algorithm
should figure this out, however this is likely to hurt coverage since
it may take several re-crawling cycles to get to the optimal value.
Comparison in a Focused Setting. In this setting, we only con-
sider a page to be relevant if it is classified as positive by the page
classifier for the corresponding domain. Figure 2 shows how cov-
erage changes over time for the different strategies, while Table 2
shows the coverage obtained at the last timestamp. We observe
that our approach outperforms all the baselines. In Humanitarian
Crisis and Politics, BANDIT attains more than 150% of the coverage
obtained by all the baselines.

For Human Trafficking, the difference in coverage is smaller.
As we observed in the Figure 1, this domain does not have the
daily and weekly patterns present in the other domains, and the
variation in the number of new pages hourly is also comparatively
small. As a result, all baselines perform well in this easy domain.
This suggests that our methods are especially effective for domains
that present higher variability in the the generation of new pages.
Note that for this domain, OD-WIN, which does not take overlap
into account, is the best baseline. This can be explained by Table 1.
Indeed, this domain has the smallest average number of pages
per site. Therefore, it is likely that there is little overlap among
the selected seed pages. Another interesting observation is that in
Humanitarian Crisis domain, COV* performs worst. One potential
explanation for this is that, in this domain, the number of new
relevant pages discovered per seed page in each hour is very small,
which makes the estimation Ôt−1(S) less accurate.

Comparing REG, REG-RR and BANDIT, their performance is
comparable in Human Trafficking and Politics domain. However,
in Humanitarian Crisis domain, the BANDIT method obtains best
result and REG is the worst. As Figure 1 shows, this domain has
the highest variability in the generation of new pages. This sug-
gests that depending on the nature of the data to be collected,
using exploration may or may not lead to improvements. However,
BANDIT provides the best solution: by balancing exploration and
exploitation in a dynamic fashion, it is able to adapt automaticall
for different domains.



(a) Human Trafficking domain (b) Politics domain (c) Humanitarian Crisis domain

Figure 2: Comparison of coverage between baselines and prediction based methods in focused setting

(a) Human Trafficking domain (b) Politics domain (c) Humanitarian Crisis domain

Figure 3: Comparision of coverage between baselines and prediction based methods in non-focused setting

Figure 4: Age of pages discovered by the best method in fo-
cused setting from Humanitarian Crisis domain

Comparison in a Non-Focused Setting. While the goal of our
work is to support efficient discovery of pages in a domain, we are
also interested in assessing the effectiveness of our approach for
general discovery. To do so, we consider all discovered pages as
relevant. Figure 3 shows how coverage varies over time for the dif-
ferent strategies. Although the magnitude of the difference between
these methods seem to be smaller, our proposed methods still out-
perform all the baselines. Aside from that, we also observe that REG
performs much worse than BANDIT and REG-RR in Humanitarian
Crisis domain, which shows the effectiveness of combining explo-
ration and exploitation. Another observation is that CLIQ-WIN*
obtains better coverage than OD-WIN, especially in Humanitarian

Figure 5: Coverages obtained by varing k in focused setting
from Humanitarian Crisis domain

Crisis domain. The reason is that the number of new pages discov-
ered per site each hour in the non-focused setting is much higher
than that in the focused one. This leads to larger overlaps between
seed pages, which is considered in CLIQ-WIN*. Note that in our
data collection process, we limit the number of seed pages per site
to be quite small, which likely reduces the overlaps. However, when
the limit is higher, methods that eliminate the overlaps would be
more effective.

5.4 Age of Discovered Pages
To demonstrate the efficiency of our method to discover relevant
pages in a timely manner, we analyze the age (i.e., time interval



since publication until discovery) of relevant pages when they were
discovered using our best method–BANDIT. Figure 4 shows that
in the Humanitarian Crisis domain, 58.73% of relevant pages were
discovered within 1 hour of publication; and over 80% within 4
hours. Note that in this setting, we set k to 50, which is equivalent
as re-crawling the entire seed pages every 2.8 days. Similar results
were obtained for the other domains, which we omit due to space
limitation.

5.5 Impact of k on Coverage
In the previous experiments, we fixed k in all settings for the sake of
comparison. We now explore how varying values of k impacts the
coverage for different selection methods. For this experiment with
focused setting in Humanitarian Crisis domain, we use our best
method - BANDIT, and the two best baselines - OD-WIN and CLIQ-
WIN. As Figure 5 shows, BANDIT outperforms the other methods
even when we vary k . We note that in a production environment,
k can be set based on resource availability (i.e., maximum number
of pages to be crawled in each re-crawling cycle) or politeness
constraints (i.e., maximum number of pages to be crawled from
single web site in each re-crawling cycle).

6 CONCLUSION AND FUTUREWORK
In this paper, we addressed the problem of efficiently discovering
Web content for a given a domain of interest. We proposed a new
framework whose goal is to attain high coverage for the domain
while at the same time discovering new, relevant content in a timely
fashion. Our framework is adaptive and updates the re-crawling
schedules dynamically. At each re-crawling step, it selects the top-k
seed pages that maximize the yield of new content using informa-
tion collected in previous steps. Unlike previous approaches which
assumed the crawler has full knowledge of how pages change over
time, the framework incrementally learns the change patterns as
the crawl proceeds and more knowledge about pages is acquired.
In addition, to increase coverage, it also takes overlap into account
and also balances exploration and exploitation. We performed a
detailed experimental evaluation which shows that our approach
is effective and outperforms previously-proposed, state-of-the-art
methods. In future work, we plan to extend this work in several
directions. First, a larger scale experiment, with a larger number
of seeds and a longer data collection period, would allow a better
understanding of the behavior and effectiveness of the multi-armed
bandits approach over the prediction-based methods in the long
run. Another direction that we would like to investigate is the
effectiveness of content-based features, which were successfully
employed to predict page changes in previous work [24], and may
be correlated with the publication rates of new outlinks as well.
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