
Sublogarithmic Algorithms for Planar Point Location
Computational Geometry, Spring 2021 - Project Report

Aécio Santos
aecio.santos@nyu.edu

1 Introduction

Planar point location is one of the most well-studied and fundamental problems in computational
geometry: given a map and a query point (i.e., its coordinates), �nd the region of the map contain-
ing the query point. �is problem has found applications in many areas ranging from computer
graphics and geographic information systems to motion planning and computer-aided design. In
its classic de�nition, the planar point location problem asks the following question:

De�nition 1 Given a planar polygonal subdivision S and a query point p, how can we preprocess S
to construct a data structure that occupies low space and supports queries that e�ciently �nd the face
in S where the point p is located.

Point location problem variants. Many variants of this problem have also been described in
the literature [13, 5, 4] that di�er in terms of their se�ings and supported operations. For instance,
while in the static variant all changes to the data structured are known at the time of the data
structure construction, in the dynamic version of the problem the data structure must also be able
to receive modi�cations to the planar subdivision and support operations that e�ciently update
an existing data structure.

Besides the di�erences in supported operations, solutions to the problem also make a wide
range of di�erent assumptions about the input data. For example, while the problem from De�ni-
tion 1 accepts arbitrary polygonal subdivisions, the orthogonal (or rectangular) [4] point location
problem is a variant in which all the edges of the planar subdivision are either vertical or hor-
izontal. As another example, the solution given by Iacono and Langerman [13] works only for
hyperrectangles and their space and construction bounds depend on a property of the input data,
namely, the fatness of the hyperrectangles.

Our work. In this report, we focus on the planar point location problem from De�nition 1.
We studied the algorithm proposed by Chan and Pătraşcu [5], which, to the best of our knowl-
edge, has the best known asymptotic bounds in the worst-case scenario. We contrast their results
with classic results for point location algorithms (Section 2), and we describe how their algorithm
achieves sublogarithmic query time by building on algorithmic techniques developed by Fredman
and Willard in [11] for Fusion Trees (Section 3). In addition, we discuss the limitations of this al-
gorithm from a practical point of view, which are reminiscent of Fusion Trees – which, currently,
are mostly of theoretical interest (Section 3.3). Finally, we describe our e�orts in devising an alter-
native algorithm that also operates on the word RAM model but that does not rely on the Fusion
Tree’s techniques (Section 4).
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2 Classic Results for Planar Point Location

Results on the comparison-based model. �e long history of theoretical research on planar
point location has produced several important results. In particular, existing comparison-based
algorithms are able to achieve O(log n) time queries using only O(n) space. It can be shown,
using an adversary argument, that these results are optimal for comparison-based query algorithms,
i.e., a minimum of Ω(log n) comparisons are required [23].

To achieve these results, several algorithmic techniques have been developed and used such
as the slab method [8], persistent trees [22], fractional cascading [6, 9], trapezoid graphs [21], hier-
archical triangulations [14], and monotone subdivisions [9]. Table 1 provides a non-exhaustive list
of these results, along with their query time, preprocessing time, and space usage. Note that the
four algorithms in this table that achieve optimal query time and space use substantially di�erent
approaches. As we will see in next section, these information-theoretic lower bounds for querying
only hold for comparison-based algorithms that operate with real numbers and can be improved
using other computational models.

Method �ery Space Preprocessing

Slab method [8] O(log n) O(n2) O(n2 log n)
Trapezoids [21] O(log n) (w.h.p.) O(n log n) O(n log n) (exp.)
Slab + Persistent Trees [22] O(log n) O(n) O(n log n)
Randomized incremental [17, 12] O(log n) O(n) O(n log n) (exp.)
Monotone subdivisions [9] O(log n) O(n) O(n log n)
Hierarchical triangulations [14] O(log n) O(n) O(n)

Table 1: A list of classic algorithms under the comparison model that achieve optimal query time.
Only four of them achieve the optimal linear space usage.

3 Planar Point Location in Sublogarithmic Time

�e planar point location algorithm proposed by Chan and Pătraşcu in [5] was the �rst algorithm
to achieve sublogarithmic query time with a linear space usage. In order to break the O(log n)
query time lower bound from classical comparison-based algorithms, they rely on algorithms that
operate on the word RAM computational model. Before describing the main ideas behind this
state-of-the-art algorithm, we �rst provide a brief introduction to this model and some key results
that serve as building blocks for sublogarithmic algorithm from [5].

3.1 Transdichotomous Models and the Word RAM

Transdichotomous models [11] refers to variations of the traditional random access machine (RAM)
model that support bit-wise operations on words and assumes that the machine word size matches
the problem size. As opposed to the real RAM model, which allows computations with exact real
numbers, transdichotomous models, such as the word RAM model, assume that both the prob-
lem input and the values stored in memory are integers with a �xed number of bits. �is addi-
tional power allows algorithms to break through information-theoretic lower bounds that apply
to comparison-based models on the real RAM.
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�e Word RAM Computational Model. In the word RAM model, it is assumed that the input
can be represented as integers in the bounded universeU = {0, 1, ..., 2w−1} of sizeU = |U| = 2w,
where w is the machine word size. It is also assumed that pointers �t in a single word and that
there is enough space to �t the input, so the universe sizeU ≥ n andw ≥ log n. Finally, the model
assumes that common mathematical operations (e.g., +,−, ∗, /) and bit-wise operations (e.g., &, |,
¬,�,�) can be done in constant time for integers that �t in a word. �ese assumptions �t more
closely the capabilities of current computers and C-like programming languages.

Predecessor Search on the Word RAM. One of the problems that are typically analyzed under
the word RAM model is the predecessor problem, which can be solved optimally in O(log n) using
binary search or binary search trees (BST) under the comparison model. In the word RAM model,
this problem can be solved in sublogarithmic time by two prominent data structures known as van
Emde Boas Trees [10] and Fusion Trees [11].

A van Emde Boas Tree (vEB) for the universe U is a recursive tree structure that splits the
universeU into

√
U buckets, each storing

√
U items using vEB data structures that hold the items.

In his original paper [10], van Emde Boas has shown that vEB trees can achieve update and query
operations in θ(logw) time with θ(U) space usage. Today, it is well-known that the θ(U) space
can be reduced to θ(n) with randomization techniques. Subsequent work by Willard [24] proposed
similar data structures similar to vEB trees, x-fast tries and y-fast tries, that achieve the same bounds
as vEB trees. More recent works, have further developed these ideas and proposed z-fast tries [3,
2], which have not only good theoretical properties, but have also achieved good performance in
practical applications.

�e Fusion Tree, proposed by Fredman and Willard [11], is a data structure similar to B-Trees.
�e basic idea behind it, is to use a branching factor of size k – as opposed to the size-2 branching
factor of a Binary Search Tree – and, at query time, to perform a simultaneous comparison between
the query and all k keys in a node in constant-time using word-level operations. In order to do that,
fusion trees need to carefully “pack” (or “fuse”) k integers into a single machine word that allows
for multiple comparisons in constant time. To do so, it needs to exploit operations and techniques
such multiplication, most-signi�cant set bit (MSB), sketch compression, and word-level parallelism
(for parallel comparisons).

More speci�cally, a fusion tree is a k-ary search tree where every node holds roughly k =

θ(w1/5) sorted keys. �erefore, the tree height is O(logw1/5 n) = O
(

logn
1/5 logw

)
= O(logw n).

Given that the comparisons necessary to descend a node take constant time, the total query time
is θ(logw n). �is is always be�er than a binary search tree because w is assumed to be at least
log n. �erefore, the following relations hold: θ(logw n) = θ

(
logn
logw

)
< θ

(
logn

log logn

)
< θ(log n).

A comparison between the query complexity of these two classic data structures shows that
van Emde Boas Trees work be�er when the word size w is small, whereas Fusion Trees are be�er
when w is large. If we know the value of w a priori, we can choose the best between fusion
trees and van Emde Boas Trees to achieve O(min{logw, logw n}). It is easy to show that the two
approaches become equivalent (i.e., logw = logw n) when logw =

√
log n. �us, it is always

possible to achieve O(
√

log n) query time by combining the two approaches.
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3.2 Chan and Pătraşcu’s Algorithm

3.2.1 Planar Point Location via Point Location in a Slab

�e approach taken by Chan and Pătraşcu in [5] to solve the planar point location problem is based
on the slab method. �ey argue that the problem of locating a point among disjoint line segments
spanning a vertical slab is the key sub-problem in planar point location. �ey also show that it is
possible convert any given solution for slab problem, with O(t(n)) query time and O(n) space,
into a solution for the general planar point location problem. �erefore, improving the runtime of
point location in a slab implies in improvements to the general planar point location problem (and
also other fundamental computational geometry problems).

Problem reductions. In order to go from the point location in a slab to a general planar location
algorithm, Chan and Pătraşcu described how to adapt three di�erent existing planar point location
algorithms to use data structure for point location in a slab:

1. Planar separators [16]: �e �rst solution relies on the planar graph separator theorem by
Lipton and Tarjan [16]. While this approach has the best theoretical properties (e.g., deter-
ministic bounds, linear-time construction), the authors in [5] note that it is the least practical
because of large hidden constants.

2. Random sampling [18]: �is method is a randomized algorithm that takes time O(n · t(n))
and it is the simplest of the three proposed methods. �e method basically uses random
sampling to �nd suitable trapezoidal decompositions for which to build a slab point location
data structure.

3. Persistent search trees [22]: �is method adapts the classic approach of persistent trees to
support inserting and deleting segments into the data structure for the slab problem over
time. �is approach requires ideas from exponential search trees [1] and resulted in a deter-
ministic construction time equivalent to a sorting algorithm.

Sublogarithmic query time. Because the reductions described above make minimal assump-
tions on slab data structure, these results can be used as black-boxes to turn slab data structures into
planar point location solutions. By proposing an more e�cient data structure for the slab problem
that answers queries inO(lg n/ lg lg n) withO(n) space, Chan and Pătraşcu were able to obtain a
planar point location algorithm that reaches query time of O(min{lg n/ lg lgn,

√
lgU/ lg lgU})

for planar subdivisions whose segments have w-bit rational coordinates.

3.2.2 Point Location in a Slab

At the core of Chan and Pătraşcu’s approach is a new method for solving the slab problem in
sub-logarithm time on the word RAM model. �is sub-problem can be formally de�ned as follows
(transcribed from [5]):

De�nition 2 (Point Location in a Slab) Given a static set S of n disjoint closed (nonvertical) line
segments inside a vertical slab, where the endpoints all lie on the boundary of the slab and have integer
coordinates in the range [0, 2w), preprocess S so that given a query point q with integer coordinates,
we can quickly �nd the segment that is immediately above q.
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�eir approach performs a b-ary search on subdivisions of the slab using Fusion Trees’ tech-
niques that we described in Section 3.1. �e challenge in making these techniques work is that the
search is over line segments (2D), and not simply numeric values (1D). Hence, it is not clear how
to pack segments into words and make comparisons in constant time.

Key algorithmic ideas. �e initial idea is that locating a query point q among segments s1, ..., sb
reduces to locating q among any set of segments s̃1, ..., s̃b that satisfy s1 ≺ s̃1 ≺ s2 ≺ s̃2 ≺ ...,
where ≺ denotes the (strict) belowness. �is �exibility in the segment endpoints is important be-
cause it allows rounding them. �is, in turn, allows �nding new endpoints that can be encoded in
a su�ciently small number of bits, which is helps packing multiple endpoints into a single word.

Consider the right and le� endpoints of the line segments crossing the slab, which lie in the
intervals IR and IL, of lengths 2lR and 2lL , lying in the vertical lines xR and xL, respectively. Chan
and Pătraşcu [5], have shown that it is possible to �ndO(b) line segments {si ∈ S} in sorted order,
that include the lowest and highest segments of S, with the following two properties (which we
transcribe from [5]):

1. For each i, at least one of the following holds:

(a) there are at most n/b line segments of S between si and si+1;

(b) the le� endpoints of si and si+1 lie on a subinterval of length 2lL−h;

(c) the right endpoints of si and si+1 lie on a subinterval of length 2lR−h.

2. �ere exist O(b) line segments s̃0, s̃2, ... cu�ing across the slab, satisfying all of the following:

(a) s0 ≺ s̃0 ≺ s2 ≺ s̃2 ≺ ...;
(b) distances between the le� endpoints of the s̃’s are all multiples of 2lL−h;

(c) distances between right endpoints are all multiples of 2lR−h.

�ese properties are important because they imply that all segments between si and s̃i can
always make progress by reducing the number of segments of the length of the searched interval.
�e reason why this is the case is that either:

1. �ere are only a few segments (i.e., up to n/b) between si and s̃i (as guaranteed by property
1a), which means that we can reduce the problem size by a factor of b.

2. If there are many segments, the distances between these segments is small (as guaranteed
by property 1b and 1c). �us, endpoints can be represented with a few bits: by dividing
endpoints of each subinterval by 2l−h, they can be represented by an integer in [0, 2h) with
only h bits. �is reduces the interval length by h.

In other words, a search tree can decrease the sub-problem size by either decreasing the number of
segments in a interval subdivision or by decreasing the interval length that needs to be searched
(and hence, increasing the number of segments that can be packed into a single fusion tree node).
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Finding Slab Subdivisions. �e algorithm to �nd the of segments {si} and {s̃i} is as follows:

1. Create a grid over IL with 2h subintervals of length 2lL−h (resp. for IR);

2. Let B be a set containing every (nb )th segment of S, starting with the lowest segment;

3. Choose a set {si} from B as follows:

(a) First, let s0 be the lowest segment;
(b) Let si+1 be highest segment of B such that either the le� or the right endpoints of si

and si+1 are in the same grid subinterval, if it exists;
(c) If no such segment above si exists, let si+1 be the successor of si in B;
(d) Let i = i+ 1 and repeat 3b and 3c until the highest segment is reached;

4. For each si, create a s̃i by rounding each endpoint to the grid point immediately above si.

Given that the segments in the sets si and s̃i created with this procedure satisfy the two prop-
erties described above, they can be encoded in a few bits and used to create a 2D version of the
fusion tree structure. Speci�cally, theO(b) segments s̃0, s̃2, ... can be encoded inO(bh) bits, which
can be packed into a single word of size w if we let h = bεw/bc for a su�ciently small constant
ε > 0. Building a tree by picking the segments using this algorithm yields a tree with height at
most logb n+ 2w/h = O(logb n+ b).

�erying. At query time, similarly as done with lines segments, we can map the query point
q to a point q̃ with integer coordinates in [0, 2h] in O(1) time. �en, we �rst locate q̃ among s̃i’s.
Next, we can use word operations to �nd the position of q̃ between the segments {s̃0, s̃2, s̃4, ...},
and then, another constant-time comparison can be done to locate q̃ among all {si} and answer
the query by recursively searching the sub-trees. In [5], Chan and Pătraşcu described in high
level how to implement these comparisons using constant-time operations such as multiplications,
divisions, shi�s, and bitwise ANDs. To get a sublogarithmic query time, they suggest to choose
b = b

√
log nc, which yields O(logb n+ b) = O(log n/ log log n).

3.3 Practical Limitations

Chan and Pătraşcu’s algorithm reached a signi�cant theoretical speed-up for planar point location.
In practice, however, the algorithm has limitations reminiscent of the fusion tree approach. �e
algorithm relies on packing multiple numbers into a single word w, which means that we need a
large word size to achieve large branching factors.

In practice, the word size is �xed in common computer architectures (currently,w = 64 in most
computers), thus we can not freely choose the branching factor b. For instance, if we �x h = 7,
we get a integer grid with small ranges in [0, 2h] = [0, 27] = [0, 128]. �e actual space required to
store a line segment is 2(h+ 1) bits [5], then the branching factor becomes b ≤ bw/2(h+ 1)c =
64/16 = 4, which is close to to the branching factor of a binary search tree. In this case, b is only
less than

√
log n for input of size n ≤ 28 = 65, 536.

Finally, Chan and Pătraşcu’s algorithm conceivably has larger hidden constant factors than a
simple binary search tree or binary search, and therefore it may not pay o� in practice in current
computer architectures. Similar limitations have been noted by Navarro for the predecessor search
problem using 1D fusion trees [19] and even in Fredman and Willard’s original paper [11].
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4 Point Location using 1D Predecessor Search

�e limitations described in Section 3.3 motivate the design of alternative algorithms on the Word
RAM model that are able to achieve sublogarithmic query time, while not relying on the large ma-
chine word sizes. In this project, we explored several ideas of possible algorithms based on e�cient
(word RAM) predecessor search data structures. While none of these ideas were able guarantee
O(n) space and o(log n) query time in the worst case, they still may provide sublogarithmic query
time if the input data meets certain conditions.

Point location via slab rotation. Our �rst observation is that, for certain inputs, we can create
slab subdivisions that contain a single line segment. For instance, the slab from Figure 1a shows
an example of a slab subdivision by horizontal lines where three subdivisions contain a single line
segment. �is suggests that an algorithm based on a 1D predecessor search (e.g., vEB trees [10],
y-fast tries [24], and z-fast tries [3, 2]) may be used as a �rst step: we can build a 1D predecessor
search structure for locating points among vertical subdivisions over the y-axis. At query time,
whenever we �nd that a query point lies on a subdivision that contains a single segment, we only
need a single constant-time point-line comparison to determine the face where the point query
lies on. If there is more than one segment, we can fall back to a binary search over line segments. If
we use data structures such as vEB-like trees, we get a query time ofO(log logU +1) = O(logw)
for certain queries, and O(log n) in the worst-case queries. For typical computer architectures,
where w = 64, this means a small constant time query cost (given that log2w = 6).

�e second observation is that some slab subdivisions that contain more than one segment,
such as the top (green) subdivision in Figure 1b, can be rotated through the origin by an angle of θ
degrees, such that it becomes possible to locate the point among the segments using 1D predecessor
search (see, for example, the slab in Figure 1c). �is suggests another improvement to the algorithm
above: we can create a search tree structure where each node leads to a slab subdivision. A 1D
predecessor search structure can be used again for locating which slab should be followed. When
we locate a subdivision that contains s segments, we compare the query point to the segment s/2,
a perform a recursive search over half of the slabs in the query subdivision.

�is approach implies that with a predecessor search plus one segment comparison, we reduce
the problem size from O(n) to O(n/4) in the worst case and Ω(1) in the best case. We get the n/4
reduction because the segment comparison can divide the problem by 2, and the predecessor search
by another 2 (but possibly more). It easy to see that we can always �nd a rotation that subdivides
the set of segments in at most n/2 segments (it su�ces to pick the angle that transforms the
segment in the middle into a horizontal line).

Point location via duality. We also considered an approach based on point-line duality. �e
slab structure has a rather interesting structure in the dual plane, which can be seen in Figure 2.
�e line segments in the slab generate the double-wedge structures in the dual plane. Point q, in
the primary plane, that lie between two segments s1 and s2 translates to a line q∗ that crosses the
white diamond-shaped quadrilaterals created by the double-wedges of s1 and s2. �is suggests
that we can pre-compute the regions where q∗ crosses a vertical line in the dual plane. However,
this would lead to n2 space given that the double-wedge lines create n2 di�erent subdivisions on a
vertical line in the dual plane. While it seems to be possible to reduce the n2 space factor to some
sub-quadratic factor by partitioning the segments into a tree structure, it is not clear how to make
this use only linear space.
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(a) (b) (c)

Figure 1: Examples of vertical slabs subdivisions by horizontal lines.

Figure 2: Structure of the slab in the dual plane. Figure generated using the app available in [15])
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