
E�cient Algorithms for Correlated Data Discovery

DISSERTATION

Submitted in Partial Ful�llment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY
TANDON SCHOOL OF ENGINEERING

by

Aécio Solano Rodrigues Santos

May 2024

E�cient Algorithms for Correlated Data Discovery

DISSERTATION

Submitted in Partial Ful�llment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY
TANDON SCHOOL OF ENGINEERING

by

Aécio Solano Rodrigues Santos

May 2024

Approved:

Department Chair Signature

Date
University ID: N10789003
Net ID: asr498

Martin Farach-Colton
 May 10, 2024

May 1, 2024

May 1, 2024

May 1, 2024

iii
Micro�lm or other copies of this dissertation are obtainable from

UMI Dissertation Publishing

ProQuest CSA

789 E. Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

iv
Vita

Aécio Solano Rodrigues Santos was born in Teresina (Piauí), Brazil, in 1991. He has a

Technology Degree in Analysis and Development of Systems from the Instituto Federal

do Piauí (IFPI) and an M.S. in Computer Science from the Universidade Federal de

Minas Gerais (UFMG), Brazil. He worked as a software engineer for a Brazilian start-up

called Zunnit Technologies, where he helped develop a scalable news recommendation

platform that was used by some of the major Brazilian media companies. In 2015, he

moved to New York City to join New York University (NYU) as a Research Engineer,

where he worked on multiple research projects (including DARPA’s Memex and D3M

programs) that required a combination of knowledge and skills in Software Engineering,

Machine Learning, and Information Retrieval (Web Search). He started his Ph.D. in

January 2020, where he worked on new methods for improving dataset search and

discovery systems. During his Ph.D. program, he received the 2022 Deborah Rosenthal,

MD Award for outstanding performance on the Ph.D. qualifying examination and the

2024 Pearl Brownstein Doctoral Research Award, which is given to students whose

doctoral research shows the greatest promise. His research was supported by grants

from the NSF, DARPA, and Google Research.

v
Acknowledgements

I would like to express my sincere gratitude to Prof. Juliana Freire, who has not

only been a Ph.D. advisor but also a supervisor and collaborator since long before

the beginning of my Ph.D. studies. We have been working together at NYU for over

nine years, which is by far the longest time I have been a�liated with any school or

organization. It has been a long ride with a lot of learning and growth, and hence I

cannot describe in a fewwords my appreciation for your continuous support, experience,

and in�uence in my past and future career.

I would also like to thank the committee members of my dissertation: Christopher

Musco, Flip Korn, and Julia Stoyanovich. Your insightful questions and comments on

my work led me to think more broadly and encouraged me to �ll some fundamental

missing gaps in this work. Special thanks go to Flip Korn and Chris Musco, who were

also incredible mentors and have contributed signi�cant ideas that are included in this

dissertation. I have learned a lot from you. Thanks, Flip, for your careful diligence and

attention to details that would have been easily missed by many; Thanks, Chris, for

your patience and tutoring; before meeting you, I had never thought that one day I

would ever be involved in research on the theoretical aspects of algorithms.

Having come so far, it could be easy to just forget one’s early steps. However, I

would like to thank all of you whom I met at every step of my academic and professional

career. In the name of Prof. Nivio Ziviani (UFMG), I would like to thank all my previous

mentors, supervisors, colleagues, and collaborators at IFPI, UFMG, and Zunnit from

whom I have learned so much over the years. The inspiration and knowledge that I

gained from all of you is an important part of who I am today and has substantially

contributed to my current research accomplishments.

vi
After being nine years at NYU VIDA lab and observing its constant �ux of brilliant

minds that come and go every year, the list of colleagues and friends that I owe a thanks

has grown so much that I can’t possibly list all of you here. Some of you were there

since the very beginning – Ann Borray, Yamuna Krishnamurthy, Kien Pham, Rémi

Rampin, Aline Bessa, Fernando Chirigati, Raoni Lourenço, Jorge Ono; Some of you

arrived soon after me – Sonia Castelo, Vicky Rampin, João Rul�, Roque Lopez; Some

of you arrived not long ago – Haoxiang, Yurong, Stella, Vitória, Priscylla, Eduardo,

Suemy, Felipe; Some of you were never even o�cially at NYU but sure were and are a

part of our extended family – Daniela Bertoli, Chris Shultz, Laura Durbin. I don’t have

proof yet, but I conjecture that there is a better sampling-based sketching algorithm

that would have chosen a di�erent and more comprehensive subsample of names of

other very deserving people to be included here. Or perhaps an LLM could help write

a better, personalized, a less boring acknowledgments section for each reader, but I

digress. I’m grateful for having met all of you and have had the opportunity to join the

lively discussions and and share the laughter in numerous moments in and o� campus.

You are what makes VIDA a good place to be in.

Last but not least, I have to thank my family. Without their unwavering support, I

would have never gotten here. Thanks to my father, my mother, and brother, who are

always rooting for me and are a constant source of inspiration and motivation; and to

my partner, Juliana Barbosa, who was always together with me not only during most

of the good moments mentioned above but also has been there for all the bad moments

and has always held my hand. I can never thank you all enough.

Aécio Santos,

May 2024.

vii

To my loving family.

viii

ABSTRACT

E�cient Algorithms for Correlated Data Discovery

by

Aécio Solano Rodrigues Santos

Advisor: Prof. Juliana Freire, Ph.D.

Submitted in Partial Ful�llment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

May 2024

The increase in our ability to collect and store data has led to an explosion in the

number of data repositories containing both public and enterprise data. While this

abundance creates exciting opportunities for data analytics and modeling, it also makes

it harder to �nd data that is relevant to a given task. In this dissertation, we argue that

existing data discovery systems have important limitations that hamper a user’s ability

to �nd data within large repositories that satisfy a given constraint (e.g., joinability and

data correlations). We propose new systems and methods that address these limitations

and make dataset discovery e�ective and e�cient.

ix
The �rst technical contribution of this dissertation is the design and implementation

of Auctus, a search engine tailored for dataset discovery. With Auctus, we introduced

new methods to improve dataset search, from the automatic generation of metadata

from the dataset content to a user interface that streamlines the search process and the

selection of relevant datasets. In addition, Auctus supports dataset-oriented queries

which allow automatic augmentation of a given dataset using data discovered from

datasets published in open-data repositories on the Web. Our experience with the

development of Auctus led to the identi�cation of key limitations of existing data

discovery methods that we addressed in subsequent work.

The second contribution is the introduction and formalization of the concept of

Join-Correlation Queries (JCQ): Given a query table T with a column Q and a join

column K, the goal is to �nd tables in a large data collection that both (1) are joinable

with the query table T on the join column K and (2) contain a column C that is strongly

correlated with Q. This class of queries is motivated by the opportunity to discover

useful features in large data repositories that may explain a target variable of interest

or improve the predictive power of machine learning models. Some key challenges in

evaluating these queries are performance and scalability. To solve these problems, we

1) propose a new sampling-based sketch that enables the construction of an index for a

large number of tables and that provides accurate estimates for join-correlation queries,

and 2) explore di�erent scoring strategies that e�ectively rank the query results based

on how well the columns are correlated with the query.

To further improve our approach, we re�ne our method and sketching algorithms

in two directions. First, we improve our sketches with a tuple-based sampling scheme

that allows handling joins over non-unique keys and demonstrate that this new method

can e�ectively estimate complex non-linear relationships such as mutual information

x
over various data types (including numerical and categorical). Second, we generalize

our de�nition of JCQ to Weighted Join-Correlation Queries, allowing users to specify

preferences for joinability and correlation strength. Additionally, we propose a novel

hashing scheme, QCR, leading to another indexing scheme that allows answering

(Weighted) Join-Correlation Queries even more e�ciently and achieves better trade-o�s

that signi�cantly improve both the ranking accuracy and recall.

Finally, we show that the algorithms we propose are justi�ed by formal theoret-

ical analysis and extensive experimental evaluations, which verify the accuracy and

e�ciency of our methods across diverse synthetic and real-world datasets.

xi

Table Of Contents

Vita . iv

Acknowledgements . v

Abstract . viii

List of Figures . xviii

List of Tables . xx

1 Introduction 1

1.1 Motivation . 3

1.2 Challenges . 5

1.3 Contributions . 9

1.3.1 Join-Correlation Queries . 10

1.3.2 Algorithms for Evaluating Join-Correlation Queries 11

1.4 Summary and Dissertation Outline . 13

2 Background & Related Work 15

2.1 Cardinality Estimation via Sketches . 15

2.2 Correlation Estimation . 17

2.3 Mutual Information . 19

2.4 Additional Related Work . 23

xii
3 Auctus: A Search Engine for Data Discovery and Augmentation 31

3.1 The Auctus System . 33

3.1.1 Auctus Architecture . 33

3.1.2 Auctus User Interface . 36

3.1.3 Scalability and APIs . 40

3.2 Use Cases . 40

4 Evaluating Join-Correlation Queries using Sketches 43

4.1 Ranking Datasets via Correlation Estimates 44

4.2 Estimating Join-Correlation . 47

4.2.1 Correlation Sketches (the CSK method) 48

4.2.2 Estimating Join-Correlation . 52

4.2.3 Discussion . 54

4.2.4 Implementation Details . 55

4.3 Ranking Correlated Columns . 56

4.3.1 Ranking with Uncertain Estimates 57

4.3.2 Measuring the Estimation Error Risk 58

4.3.3 Con�dence Interval Bounds . 59

4.3.4 Scoring Functions . 64

4.4 Experimental Evaluation . 65

4.4.1 Datasets . 66

4.4.2 Correlation Estimation Accuracy 67

4.4.3 Exploring Di�erent Correlation Estimators 68

4.4.4 Correlated Column Ranking . 70

4.4.5 Runtime Performance . 73

xiii
5 Tuple-based Sketches & Mutual Information Estimation 76

5.1 MI Estimation over Joins with Repeated Keys 77

5.1.1 Problem Statement . 78

5.1.2 Joining Arbitrary Tables . 79

5.2 Sketches for Joins on Repeated Keys . 81

5.2.1 Baseline: Two-Level Sampling (LV2SK) 84

5.2.2 Proposed Approach: Tuple-based Sampling (TUPSK) 86

5.3 Experimental Evaluation . 89

5.3.1 Synthetic Data Generation . 90

5.3.2 Experiments Using Synthetic Data 93

5.3.3 Experiments Using Real Data 99

5.3.4 Performance Evaluation . 102

6 Weighted Join-Correlation Queries and QCR Indexes 104

6.1 Weighted Join-Correlation Queries . 106

6.2 Single-Stage Correlated Table Retrieval 110

6.2.1 The QCR Hashing Scheme . 110

6.2.2 Building the Correlation Sketches 113

6.2.3 Building the QCR Index Terms 114

6.2.4 Querying the QCR Index . 116

6.2.5 Implementation Details . 117

6.2.6 Theoretical Analysis . 118

6.2.7 Discussion . 121

6.3 Experimental Evaluation . 122

6.3.1 Experimental Setup . 122

xiv
6.3.2 Retrieval of Highly Correlated Tables 126

6.3.3 Balanced Retrieval of Correlated & Joinable Tables 130

6.3.4 Runtime Performance . 133

7 Applications to Machine Learning Model Improvement 136

7.1 Feature Discovery on Large Data Lakes 136

7.2 E�cient Feature Ranking on Wide Tables 141

8 Conclusion 144

8.1 Summary of Contributions . 144

8.2 Future Directions . 145

xv

List of Figures

1.1 Example of relational data augmentation for the problem of taxi de-

mand prediction. Adding new features, such as AVG[Temp] and

AVG[Rainfall], derived from external tables helps predict, or ex-

plain the variance of, the NumTrips attribute. The augmented table (d)

is derived by joining Ttaxi and Tweather on Date, and with Tdemographics

on ZipCode. 5

3.1 Searching for datasets that mention “taxi" and contain records within

the NYC area for the 2016-2021 period. 32

3.2 Overview of Auctus’ architecture. 34

3.3 Components of Auctus’ user interface: keyword and �lter-based

search box (A); search results (B); dataset-snippets (B1); dataset sum-

mary (B2); dataset upload (C); dataset collection statistics (D). 37

3.4 (a) A data integration query in [A], and the augmentation interface in

[B]. (b) Data Summary views. (c) Upload page. 38

xvi
4.1 Table TX./Y is the join of the input tables TX and TY , aggregated using

the mean function. Correlation sketches e�ciently reconstruct a sample

of the table TX./Y to estimate the correlation between the columns

XX./Y and XX./Y , without computing the full join. 48

4.2 The tables SX and SY represent correlation sketches for the tables

TX and TY , for sketch size n = 3 and mean aggregation. While we

explicitly show the column hu(k) for illustrative purposes, it does not

need to be stored as it can be easily computed from h(k). 49

4.3 Estimation errors signi�cantly vary for di�erent sample sizes and dif-

ferent datasets with di�erent data distributions. (a), (b), and (c) show

the deviations of all column pairs for 3 di�erent datasets. (d) shows the

estimates from (c) after �ltering out estimates that use fewer than 20

samples. 69

4.4 The sample size (sketch intersection) has an impact on RMSE. As the

sketch intersection size increases, the RMSE decreases in the NYC

dataset. Here, the k parameter (row) denotes the maximum sketch

size (number of minimum values kept in the sketch). 71

4.5 Distribution of the evaluation metric scores for di�erent scoring func-

tions. x-axis shows slices of themetric range [0, 1]. Each bar corresponds

to a slice of width 0.1. The y-axis shows the number of queries that fall

in each slice. 74

xvii
5.1 True MI vs MI estimates computed using sketches of size n = 256.

Each plot shows a di�erent sketching method (LV2SK on the left and

TUPSK on the right) and each line shows results for di�erent data

types/estimators and join key generation processes. TUPSK is more

robust to the join key distribution. 94

5.2 True MI vs MI estimates computed using sketches of size n = 256 for

CDUnif. Each plot shows a di�erent sketching method while each line

shows results for di�erent data types/estimators and join key generation

processes. 97

5.3 Sketch MI estimate versus the true MI computed using distribution

parameters. Sketch size is n = 256 for all plots. 97

5.4 Sketch MI estimate versus the MI estimate computed using the full join

output for tables from the WBF collection. Sketches are created using

TUPSK with size n = 1024 for all plots. 102

6.1 An example of a query table TQ, a candidate table TC , and the joined

table TQ./C created after joining TQ with TC , and aggregating repeated

keys using the AVG aggregate function. We are interested in �nding

candidate tables TC in a collectionD such that the after-join correlation

between attributes QQ./C and CQ./C is high. 107

6.2 An example of the four quadrants, where green points () contribute

to positive correlation and blue points () contribute to negative corre-

lation. 111

xviii
6.3 An example of mean centering for two tables TC and TQ. Letters rep-

resent join keys k and the positions along the lines represent values

ck. Yellow circles () mean that the keys do not join. Green circles

() denote that the keys join and are located in “positive quadrants”

(I and III), and Dark blue circles () mean that the rows join and are

in “negative quadrants” (II and IV). A projection of the table generated

after the join onto the plane is shown in Figure 6.2. 116

6.4 Runtime versus retrieval quality scores for di�erent parameter settings. 135

7.1 Mean Squared Error achieved by each combination of retrieval and

ranking methods in di�erent ML problems. 139

7.2 R-Squared scores achieved by each combination of retrieval and ranking

methods in di�erent ML problems. 140

7.3 ROC curves for di�erent models trained using features automatically

selected using a QCR index and a random choice of features (RAN).

A random choice of 25 features achieves only AUC=0.79. In contrast,

our best QCR-based models achieve an AUC score of up to 0.95. This

score matches some models from Dou et al. [65] and is only 0.02 points

away from their best-performing model, which achieves AUC=0.97.

The exact score di�erence could be attributed to the choice features or

other variables such as a di�erent choice of learning algorithm and its

hyper-parameters (since we did not test multiple algorithms or perform

hyperparameter tuning). 143

xix

List of Tables

4.1 Ranking evaluation scores in terms of MAP and nDCG. The “%” column

denotes relative improvement over jc. 73

4.2 Running times (in milliseconds) for computing joins and correlations

using full data and sketches. Using the full data, queries can take orders

of magnitude more time than when using the sketches. rs denotes the

Spearman’s estimator and rp denotes Pearson’s estimator. 75

5.1 Comparison of MI estimate versus the true MI using sketches of size

n = 256. The “%” column is the percentage of “Avg. Sketch Join Size”

relative to sketch size n. 99

5.2 Comparison of MI estimate using di�erent sketching strategies versus

the full join. While LV2SK can theoretically have a sketch size twice as

large as TUPSK, in practice their sketch join sizes is similar. Even with

this disadvantage, TUPSK outperforms LV2SK in estimation accuracy

(stronger Spearman’s R correlation) using less storage. 101

6.1 Ranking scores for di�erent index and ranking parameters on the NYC

Open Data (NYC) collection. 127

xx
6.2 Ranking scores for di�erent index and ranking parameters on the Syn-

thetic Table Corpus (STC) collection. 128

6.3 Average weighted means at di�erent rank positions for di�erent param-

eters on the NYC Open Data (NYC) collection. 131

6.4 Avg. JC scores on the STC table collection. 132

6.5 Avg. JC scores on the NYC table collection. 132

6.6 Running time for di�erent parameter settings along with their ranking

scores on the NYC collection. 133

1

Chapter 1

Introduction

Thesis Statement. Existing systems and methods do not provide adequate support for

interactive discovery of data relationships (such as correlations) for datasets stored in large

data repositories. We aim to make data discovery more e�ective and e�cient by designing

new systems, methods, and algorithms that expand the set of information needs that can

be supported by data discovery systems, with a special focus on correlated data search over

large data repositories.

The amount of data that we can collect and store is constantly increasing. This has

led to an explosion in the number of data repositories containing both public [121, 122,

123, 25] and enterprise data [4, 81, 105]. This data abundance creates new opportuni-

ties to enrich data analysis and improve machine learning models: by incorporating

information from various external datasets, we can explain confounding bias [168], test

hypotheses and explain salient features in data [40, 14, 12], as well as improve predictive

models [39, 31].

2
While data is abundant, it is di�cult to �nd relevant data. Not surprisingly, data

search has received substantial attention both in industry and academia. Several “data

catalog” systems that support data search across multiple systems and enterprise data

lakes are available [81, 105, 4, 162]. The market for such systems is projected to grow

from USD 528.3 million in 2019 to USD 5.46 billion in 2027 [130]. Google Dataset

Search supports search over datasets that are published on the Web [25]. There are

also open-source systems, such as CKAN [41], Socrata [147], and DataVerse [54], that

are used to deploy vertical data repositories (e.g., NYC Open Data [121], Data.gov [52],

and Harvard’s DataVerse [55]). These systems �ll important gaps in the data discovery

space, notably by providing a uni�ed interface to large collections of datasets collected

from multiple, distributed sources. However, they have important limitations when

it comes to query capabilities: their interfaces are often limited to simple keyword-

based queries and faceted search over dataset metadata. These types of queries have

limited expressiveness, making it di�cult (and sometimes impossible) to express speci�c

information needs.

In this dissertation, we design new systems and methods with the overarching goal

of enabling interactive data discovery through data-driven queries. We propose novel

types of data-driven relationship queries that enable the discovery of tables in a data

repository that are related to an input query table according to a given relationship

measure. Such measures can be simple linear relationships such as Pearson’s correla-

tion coe�cient, non-linear correlations such as Spearman’s correlation, or even more

complex dependence measures such as Mutual Information (MI). Moreover, we propose

e�cient sketching algorithms that allow performing these queries e�ciently over large

dataset collections. We also provide theoretical analyses and empirical evaluations to

demonstrate the e�ectiveness and runtime performance of the proposed algorithms.

3
1.1 Motivation

We use two examples to motivate the importance of data-driven relationship queries.

The �rst illustrates the wide applicability of correlated dataset search by discussing

the relationship between linear correlation and simple linear regression. The second

provides a concrete and practical example that illustrates how adding new variables from

external datasets (which we refer to as relational data augmentation in this dissertation)

can lead to the improvement predictive machine-learning models.

Example 1 (The Case for Correlated Data Search). Numerical correlations have many

important practical applications, which range from the use of data analytics for under-

standing real-world phenomena and con�rming (or refuting) hypotheses [11, 99, 131, 9]

to improving machine learning models through feature selection [84, 85]. To illustrate

this, we use the example of Simple Linear Regression [129], one of the most fundamental

and widely used methods for data analysis.

Linear Regression is widely used to estimate the parameters in a linear equation

that predicts values of a variable Y based on another variable X . Formally, we can

say that Y = b0 + b1X , where b0 is the intercept and b1 is the slope of the line. A

linear regression “learns” the parameters b1 and b0 of the linear equation predicting an

outcome variable, Y , based on values of a predictor variable, X .

The Pearson’s correlation coe�cient, which provides a measure of the strength of

association between two variables, is closely related to linear regression since we can

view it as the standardized slope of the regression line. It can be shown that b1 = r sX
sY
,

where si is the standard deviation of the variable i, and r is the Pearson’s correlation

between X and Y [132].

4
In other words, the stronger the correlation is, the higher the predictive power of a

variable. This shows that by �nding correlated variables in large dataset collections,

we can discover data that may “explain” or “predict” other variables of interest. While

correlations do not imply causation, discovering data correlations is a starting point for

more detailed analyses that identify true causal data relationships and, in turn, can be

used to improve predictive models.

Example 2 (Understanding Taxi Demand). A data scientist wants to improve a regression

model for predicting taxi demand that was constructed using historical data containing

pick-up times and ZIP Codes where the pick-up occurred (see table Ttaxi in Figure 1.1(a)).

Here demand is measured by the total number of taxi rides (NumTrips) originating

from the same spatio-temporal region (ZIP Code and Time). Since weather is known

to impact taxi demand, the data scientist obtains a new table Tweather (Figure 1.1(b))

that contains information about temperature and precipitation. By augmenting the taxi

trips table Ttaxi (through a join on Date) with hourly average temperature and hourly

rainfall as additional features, the mean absolute error of a random forest regressor

improves signi�cantly. In an e�ort to identify additional factors that may help explain

the demand variability in di�erent neighborhoods, the data scientist joins Ttaxi with

Tdemographics (on ZipCode) containing demographics statistics (Figure 1.1(c)). The

association between demand and population for the ZIP Codes of pick-up locations

suggests a strong dependency.

In Example 2 (Understanding Taxi Demand), the analysts knew (or had an intuition)

that weather is likely to impact taxi demand. They also knew that a dataset containing

such data was available, and knew where to �nd it. However, often this is not the case:

�nding relevant data is a di�cult and time-consuming task [73]. On the Web, data

5
Date ZipCode NumTrips

2017-01-01 11201 136

...

2017-01-02 10011 112

Date Time Temp UVIndex Wind Rainfall

2017-01-01 14:00:00 44.1 2 12mph 0.21

...

2017-01-01 16:00:00 42.0 1 15mph 0.25

ZipCode Borough Population Income

11201 Brooklyn 53,041 [89k to 170k]

...

10011 Manhattan 50,594 [89k to 170k]

Date ZipCode AVG[Temp] AVG[Rainfall] Borough Population NumTrips

2017-01-01 11201 43.0 0.19 Brooklyn 53,041 136

...

2017-01-02 10011 44.1 0.11 Manhattan 50,594 112

(a) Daily taxi trips (𝒯taxi). (b) Hourly weather indicators (𝒯weather). (c) Demographic statistics by ZIP code (𝒯demographics).

(d) Result of the augmentation of table (a) with features derived from attributes of tables (b) and (c).

Figure 1.1: Example of relational data augmentation for the problem of taxi demand
prediction. Adding new features, such as AVG[Temp] and AVG[Rainfall], derived
from external tables helps predict, or explain the variance of, the NumTrips attribute.
The augmented table (d) is derived by joining Ttaxi and Tweather on Date, and with
Tdemographics on ZipCode.

are distributed over many sites and repositories, and in enterprises, they are stored

in a plethora of systems and databases. Thus, to discover external relevant tables for

augmenting their data, users must go through a time-consuming manual process that

includes �nding the datasets, joining the datasets with their data, and retraining their

models to verify if the new data leads to improvements. As a point of reference, internal

research at Lyft has found that data discovery is the second-most time-consuming

activity for their data scientists’ work�ows (25% of their time) – they only spend more

time (40%) on model development and product deployment [81].

1.2 Challenges

Discovery E�ectiveness and E�ciency. In an attempt to optimize this process,

several methods have been proposed for automating relational data augmentation [178,

39, 32, 73, 177, 119, 62, 120]. Most of the existing work focuses on e�cient support for

data integration queries, including algorithms to discover “joinable” tables [178, 32, 73,

177, 166, 120, 69], which are typically based on join key containment or overlap. These

6
methods have an important limitation in that they can return too many irrelevant tables.

Consider our example: if we search the NYC Open Data repository [121] to discover

additional features that can help improve taxi demand prediction, we will �nd a very

large number of datasets that overlap in time with the taxi data, i.e., that are joinable

with Ttaxi on Date. Testing each of these by performing the join, re-training, and

testing the model is wasteful and can be prohibitively expensive.

Automatic relational data augmentation systems [39, 96, 110, 76] attempt to address

this problem by applying feature selection techniques on pre-joined tables [157]: given

a list of joinable tables, they �rst materialize the joins before automatically selecting

attributes that increase the accuracy of the predictive model given as input. Because

they rely on data discovery systems [73, 31] to return the joinable tables, they can end

up with both a large number of joins to perform and, consequently, too many irrelevant

features to consider. Given the high cost of evaluating the joins and the computational

complexity of feature selection methods, it is expensive to identify the useful features.

Diversity of Information Needs. Another challenge arises from the diversity of data

types and information needs of di�erent applications. Traditional correlation measures

are only applicable to numerical data and do not capture non-monotonic relationships

that naturally occur in real data. For instance, consider again the tables in Figure 1.1.

While the Pearson’s correlation coe�cient may be used to identify the relationship

between NumTrips and Rainfall, it cannot be directly applied to Borough, which

is a categorical attribute. It also can fail to identify the non-monotonic relationship

between NumTrips and Population, assuming taxis have fewer pick-ups both in

neighborhoods with small populations (due to fewer customers) and large populations

(due to heavy tra�c).

7
Ideally, data discovery methods should be �exible enough to support (1) multiple

data types that exist in real data tables and (2) general data relationship measures. For

instance, we should be able to use a more general measure of statistical dependence

such as Mutual Information (MI), which is invariant under homomorphism and applies

to di�erent data types. Due to its generality, MI has found applications in numerous

problems including the analysis of gene expression [56], functional dependency discov-

ery [113, 114, 115, 127], explanatory data analysis [169], and causality detection [87].

In machine learning, MI is also used in many feature selection methods [34, 108, 157].

Moreover, strong theoretical connections between MI and model generalization error

have been found showing that regression and classi�cation errors are minimized when

features having the largest conditional MI with the target are selected [8, 126, 27].

However, estimating MI from �nite data samples is far from trivial. Commonly used

MI estimators based on empirical entropy do a poor job of modeling the underlying

distribution due not only to small sample sizes but also to inherent estimator bias [134].

While MI is well-de�ned for di�erent data types, estimators that work with di�erent

data types usually have di�erent bias and variance characteristics. Some approaches

address this issue by transforming numerical data to categorical before applying an

estimator [83], however, these techniques have their own problems and it is unclear if

this is more e�ective than using a combination of estimators for di�erent data types.

E�cient Relationship Estimation Across Di�erent Tables. In the particular setting

of relational data augmentation, these issues are compounded by additional problems

created by the need for e�ciency and di�erent types of join key distributions, which

leads to di�erent join types (e.g., one-to-one or many-to-one). In this scenario, the goal

is to augment a given base table with additional features that will be used to train a

machine learning model to better predict or explain a target variable. In such tables,

8
each row represents an instance or entity of interest. Therefore, we need to keep the

number of rows in the original table intact via a left outer join. However, this creates

some issues.

First, joining tables on non-unique join-key attributes leads to the creation of feature

attributes containing repeated values that follow the distribution of the join key. For

instance, while the originalPopulation attribute in Figure 1.1(c) may have unique val-

ues, the derived Population attribute in the augmented table shown in Figure 1.1(d)

will have additional repeated entries according the distribution of the ZipCode join

key. In the particular case where the external attribute has a continuous distribution,

the derived feature attribute will be a mixture of continuous distributions (with repeated

values) that need to be handled properly by specialized MI estimators [79].

Second, to avoid the cost of fully materializing joins, systems are limited to estimat-

ing MI using a small number of samples of the join. A naïve approach to obtain samples

of an equi-join is to join rows sampled independently from the two tables via Bernoulli

sampling. Unfortunately, this results in a quadratically smaller join size [92] which

results in poor accuracy. State-of-the-art methods typically use coordinated sampling

(based on minwise hashing) to increase the number of samples that contribute to the

join [43]. However, given that coordination is typically achieved by hashing values of

the join-key attributes, these algorithms may introduce sampling bias and dependence

on the join-key that leads to violating the i.i.d. assumptions of estimators. When this

happens, the bias of estimators is further increased (as shown in Chapter 5).

9
1.3 Contributions

This dissertation contributes new systems and methods with the overarching goal

of supporting interactive data discovery through data-driven relationship queries. The

�rst contribution is the design and implementation of Auctus, a dataset search engine

that allows searching over datasets published in multiple open-data repositories on the

Web. With Auctus, we introduced new methods to improve dataset search, including

the automatic pro�ling of tables to support search, and a user interface that streamlines

the search process and the selection of relevant datasets. In addition, Auctus supports

dataset-oriented queries that allow augmentation of a given dataset using data dis-

covered from these repositories. In Chapter 3, we describe Auctus’ architecture, user

interface, and novel use cases that Auctus enables.

To achieve interactive response times, Auctus’ implementation uses state-of-the-

art methods that enable e�cient query execution of data discovery queries, such as

indexes for �nding joinable tables based on locality-sensitive hashing (LSH) [32]. Our

experience developing and using Auctus allowed us to identify key limitations in the

existing techniques described in the literature. For instance, existing methods did not

cater for the information needs involving correlations discussed in our Examples 1 and 2.

To address these limitations, we proposed new methods and algorithms that allow

e�cient evaluation of data discovery queries that support these needs. Next, we discuss

these contributions in detail.

10
1.3.1 Join-Correlation Queries

Our second contribution is the proposal and formalization of a new class of queries,

which we refer to as Join-Correlation Queries, that more precisely express the informa-

tion needs described in Examples 1 and 2. Formally, we de�ne it as follows:

De�nition 1 (Join-Correlation Query). Given a column Q and a join column KQ from

a query table TQ, a join-correlation query �nds tables TX in a dataset collection such

that TX is joinable with TQ on KQ and there is a column C 2 TX such that Q is strongly

correlated with C .

In Example 2, the analysts could issue a query to retrieve datasets TX that join with

the daily taxi trips dataset (TQ = Ttaxi) on join columns (e.g., KQ = Date or KQ =

ZipCode) and that also contain a column that correlates with the actual number

of trips (Q = NumTrips). As output, the query returns a list of tables TX that

contain correlated columns. For instance, if TQ = Ttaxi and KQ = ZipCode, then the

output would include TX = Tdemographics with C = Population, assuming a strong

correlation between Population and NumTrips.

Note that this de�nition is rather generic and does not strictly specify the meaning of

“strongly correlated”, as this depends on the application information needs. For example,

the correlation could be measured using a traditional linear correlation measure such

as Pearson’s correlation coe�cient or a non-linear dependence measure such as Mutual

Information. Moreover, the “strength” of the correlation could mean that the correlation

is greater than a given threshold ⌧ or it could indicate that the correlation is among the

top-k greatest correlations (for given a k > 0) in a table collection. In this dissertation

we use these two meanings, and the semantics of “strongly correlated” will be clearly

speci�ed when describing each speci�c algorithm and its experimental evaluation.

11
We also did not formally specify the semantics of “joinable”. In this dissertation, it

refers to the ability to join two tables using a relational equi-join operation, and it is

typically measured using the join key’s Overlap or Jaccard Containment. Furthermore,

the query did not prescribe how a user may specify (or combine) the levels of joinability

and correlation. We address this problem in Chapter 6, where we propose Weighted

Join-Correlation Queries, a generalization of this query de�nition that provides better

control over its parameters to the user.

1.3.2 Algorithms for Evaluating Join-Correlation Queries

The main issue in evaluating join-correlation queries is how to do so e�ciently.

A naïve approach �rst �nds joinable tables, and then explicitly computes correlations

between Q and all columns of all discovered tables. However, this approach requires

the joinable datasets returned to be downloaded and joined with the query table. When

these tables are large, they may not �t in memory and the cost of executing join

operations can be prohibitive. Furthermore, some correlation measures are expensive

to compute, e.g., to compute Spearman’s correlation the data must �rst be sorted. This

problem is compounded for queries that return a large number of datasets and require

many joins and correlation computations to be performed.

In Chapter 4, we address this problem by proposing e�cient probabilistic algorithms

for evaluating join-correlation queries that trade o� accuracy by performance. We

1) propose a sketching method that enables the construction of an index for a large

number of tables and that provides accurate estimates needed for answering join-

correlation queries, and 2) explore di�erent scoring strategies that e�ectively rank the

query results based on how well the columns are correlated with the query. Here, our

main contribution is a formalization of the problem of join-correlation estimation along

12
with a new sketching algorithm (CSK) that allows e�cient approximation (with accuracy

guarantees) of the correlation between columns of unjoined tables without materializing

their join. This sketch is a key component that allows for e�cient evaluation of join-

correlation queries without incurring the cost of joining tables. We also conduct an

experimental evaluation using both synthetic and real data, which shows that our

sketches attain high accuracy and the scoring strategies lead to high-quality rankings.

In Chapter 5, we re�ne our sketching algorithm for estimating join-correlation

in two directions. First, we propose a new algorithm (TUPSK) that does not assume

that the join key column on the left side of the join has unique values, solving a key

limitation of the CSK algorithm proposed in Chapter 4. Second, we extend our sketches

to estimate correlations between columns of di�erent data types, including continuous

(numerical), discrete (categorical), and mixtures of discrete-numerical data using Mutual

Information (MI). We also perform an extensive evaluation of our sketches coupled

with several MI estimators. This evaluation allows us to (1) con�rm the superiority of

TUPSK over CSK for general left joins, and (2) identify di�erences in the behavior of

various combinations of sketches and MI estimators, and when and why they fail.

In Chapter 6, we generalize our initial de�nition of join-correlation queries (from

De�nition 1) to incorporate user preferences (weights) regarding joinability and corre-

lation. We refer to this re�nement as Weighted Join-Correlation Queries. To evaluate

them, we propose a novel hashing scheme, namely QCR, that enables the construction

of indexes that enable retrieval of columns that are both joinable and correlated in a

single step. Our experimental evaluation shows that this approach leads to a signi�cant

increase in both recall and ranking quality at a smaller storage cost compared to indexes

created using only the CSK hashing scheme.

13
1.4 Summary and Dissertation Outline

In summary, this dissertation provides the following contributions:

• We describe the design and architecture of a dataset search engine that supports

interactive data discovery and augmentation (Chapter 3);

• We formalize the idea of Join-Correlation Queries and Join-Correlation Estimation

(Chapter 4);

• We propose the idea of “correlation sketches” and an approach for e�ciently

evaluating join-correlation queries using CSK sketches (Chapter 4);

• We describe new correlation bounds and scoring functions for ranking tables

using join-correlation estimates computes using CSK sketches (Chapter 4);

• An experimental evaluation of CSK sketches using synthetic and real-world data

that veri�es their e�ectiveness and e�ciency (Chapter 4);

• We propose TUPSK, an alternative method for building correlation sketches that

is suitable for estimating quantities over many-to-one joins (Chapter 5);

• An experimental evaluation of MI estimation using multiple MI estimators with

TUPSK sketches, which allows us (1) to assess the e�ectiveness of TUPSK sketches

and (2) to identify di�erences in the behavior of various combinations of sketches

andMI estimators for di�erent data types, and when and why they fail (Chapter 5);

• We propose Weighted Join-Correlation Queries as a way to provide more control

to users over query parameters (Chapter 6);

• We propose a new indexing approach, based on our new QCR hashing scheme,

for evaluating (weighted) join-correlation queries in a single stage (Chapter 6);

14
• An experimental evaluation of QCR indexes using synthetic and real-world data

that shows they are more time and space e�cient than alternative approaches

(Chapter 6);

• An experimental evaluation of QCR and CSK-based methods for discovering and

ranking relevant features over large data lakes and wide tables (Section 7).

The system described in Chapter 3 has been described in papers published at VLDB

2022 [31] and SIGMOD 2021 [12]. The research described in Chapters 4, 5, and 6 was

led by this dissertation’s author and has been published at ACM SIGMOD 2021 [136],

and IEEE ICDE 2024 [139] and IEEE ICDE 2022 [137], respectively. Additionally, related

papers that spun out of this research have been published at PODS 2023 [13] and VLDB

2024 [48]. Of particular interest is [48], which includes another sketching approach for

estimating join-correlation that is not included in this dissertation.

15

Chapter 2

Background & Related Work

The methods proposed in this dissertation are based on hashing techniques that have

been used for several problems, including cardinality estimation of sets, set intersection,

and set unions. In this chapter, we cover in detail some background knowledge that

serves as the basis for these methods. We also cover the literature on correlation

estimation and discuss the properties of correlation estimators that we use in this

dissertation, as well as some information-theoretic measures such as entropy, di�erential

entropy, and mutual information. Finally, in Section 2.4, we review additional research

related to the systems and methods proposed in this dissertation.

2.1 Cardinality Estimation via Sketches

Estimating Distinct Values. The problem of determining the number of distinct

values (DV) in a dataset has been extensively studied [29, 95, 124]. Since computing

the exact number of distinct elements is expensive, approximate methods have been

proposed that can scale to massive collections of datasets. E�ective approaches for DV

16
estimation rely on hashing techniques, require a single pass through the data, and use a

bounded amount of memory [86].

Let hu be a hash function that maps distinct values randomly and uniformly to the

unit interval [0, 1], and D be the number of distinct elements in a dataset. The key

idea behind DV estimators is that, if we use hu to map elements to the unit interval

and the number of distinct elements in a dataset is large (i.e., D � 1), then the

expected distance between any two neighboring points in the unit interval is 1/(D +

1) ⇡ 1/D, and the expected value of the kth smallest point, U(k), is estimated with

E[U(k)] ⇡
P

k

j=1(1/D) = k/D. Thus, the number of distinct values in the dataset can

be approximated by D ⇡ k/E[U(k)]. The simplest estimator of E[U(k)] is U(k) itself,

yielding the basic estimator: D̂BE

k
= k/U(k).

Based on this idea, algorithms and methods for building sketches have been devel-

oped to estimate set cardinality [15]. An example is the popular k Minimum Values

(KMV) sketch (also known as bottom-k sketches), introduced by Bar-Yossef et al. [5].

Concretely, a KMV sketch of a set X comprises the k minimum hash values of the

elements of X , generated by a hash function hu mapping to [0, 1]. To estimate the

number of distinct elements |X|, one can use this sketch and a DV estimator, such as

D̂BE

k
. Alternatively, an improved DV estimator proposed by Beyer et al. [16] can be

used. Their estimator, given by D̂UB

k
= (k � 1)/U(k), is unbiased, has a lower mean

squared error, and has the minimal possible variance of any DV estimator when there

are many distinct values and the sketch size is large.

Cardinality Estimation under Set Operations. Beyer et al. [16] also considered

how multiple KMV sketches, created independently, can be combined to estimate the

cardinality of sets that result from multi-set operations (e.g., union, intersection, and

di�erence). As an example, consider a set X composed of two partitions XA and XB ,

17
i.e.,X = XA [XB . Next, let LA and LB be the KMV sketches of setsXA andXB , with

sizes kA and kB respectively. We can combine LA and LB to build a valid KMV sketch

L = LA � LB , where � is an operator for combining two KMV sketches. L represents

the set comprising the k smallest values in LA [LB , where k = min(kA, kB). To

estimate the number of distinct elementsD[in the unionXA[XB , we can directly use

estimator D̂UB

k
on the sketch L. To estimate the number of distinct values D\ in the

intersection XA \XB , we must �rst compute the number of common distinct hashes

in LA and LB (i.e., K\ = |{v 2 L : v 2 LA \ LB}|). Then, we can estimate D\ as:

cD\ =
K\

k

k � 1

U(k)
(2.1)

2.2 Correlation Estimation

The problem of measuring dependence between a pair of vectors has been studied

for over a century [132], and new correlation measures continue to be developed [3, 149].

Pearson’s correlation coe�cient is one of the oldest and most widely used correlation

measures [129]. While our methods can be used to estimate any measure of correlation,

we use Pearson’s as our main motivating example.

When applied to a population, Pearson’s correlation coe�cient is usually referred

to as ⇢ [129]. For a pair of random variables hX, Y i, the coe�cient is de�ned as:

⇢XY =
E[(X � µX)(Y � µY)]

�X�Y
(2.2)

where �X (resp. �Y) is the standard deviation of the random variable X (resp. Y), and

µX (resp. µY) is the mean of X (resp. Y). ⇢XY can be estimated with a �nite sample

from distributions X and Y using what is usually referred to as Pearson’s sample

18
correlation (r):

rXY =

P
n

i=1(xi � x̄)(yi � ȳ)pP
n

i=1(xi � x̄)2
pP

n

i=1(yi � ȳ)2
. (2.3)

Above n is the sample size, xi and yi are individual samples, and x̄ and ȳ are, respectively,

the means of the sub-samples of X and Y .

There is a lot of prior work on understanding the accuracy of sample correlation

estimators, but these works typically make strong data assumptions. When data follows

a bivariate normal distribution, the sampling distribution of r is asymptotically normal

and centered around ⇢ [144]. For a �nite sample of size n, the variance of r is known to

depend both on n and on the underlying population correlation ⇢ [145]:

V ar(r) =
(1� ⇢2)2

n� 1
(2.4)

When data is not normally distributed (as is often the case in practice), less is known.

Nevertheless, there has been an increasing interest in the non-normal setting in recent

years [170, 57, 17, 18, 19, 20, 91]. Yuan and Bentler [170, 171] show asymptotically

that the standard deviation of the sample estimator r depends on the joint fourth-order

moments, or kurtoses, of the variables. In agreement, empirical simulations con�rm

that the presence of a high excess kurtosis can lead to increased bias and estimator

errors [57, 19].

Robustness and Alternative Correlations. One challenge in obtaining �nite sample

accuracy bounds, as we do in Section 4.3.3, is that Pearson’s correlation coe�cient

is known to be sensitive to outliers. In fact, it has been shown that a single sample

(xi, yi) can have an unbounded e�ect on the correlation and can potentially lead to

catastrophic estimation errors [59]. This fact has spurred the development of correlation

estimators that are robust against outliers and distribution contamination [59, 144].

19
However, these robust estimators are less e�cient than r, i.e., require larger sample sizes.

We refer the reader to [144] for an extensive review of robust correlation estimators.

Resampling-based approaches such as bootstrapping [67] can also be used to reduce

error in estimating Pearson’s correlation, especially at small sample sizes [19]. These

approaches, however, have a much higher computational cost [19].

Alternative correlation measures, such as the Spearman’s rank correlation coef-

�cient [129], and data distribution transformations, such as the Rank-based Inverse

Normal (RIN) [21, 18], may be more e�ective than Pearson for highly non-normal

data [19]. However, they have di�erent semantics from Pearson’s (e.g., they capture

non-linear relationships), and thus the choice of correlation measure depends on the

user’s application. All of these correlations can be estimated with the sketching meth-

ods proposed in this dissertation, and we experimentally study the accuracy of their

estimators when used with our sketching methods in real-world data collections (see

Section 4.4).

2.3 Mutual Information

Most traditional correlation measures (as discussed in Section 2.2) are limited to

measuring relationships between numeric data types. In this section, we introduce

Mutual Information (MI), a di�erent approach to measuring data relationships between

variables based on information theory. Because MI is de�ned on probability spaces, it

is more general and applies to variables of any data type that we can estimate their

probability distributions. Before formally introducing mutual information, we �rst

present the terminology used in this dissertation and the concept of entropy, which is

needed for the MI de�nition.

20
Data Types. As a simpli�cation, we shall use the terms discrete and continuous to

distinguish types of value distributions, with the former reserved for what is referred

to in the literature as (often unordered) categorical, and the latter as (ordered, often

�oating-point) numerical [143]. In reality, data is more complicated and may include

integral categories (e.g., UPC code) and �oating-point values that represent discrete

categories (e.g., Dewey Decimal). We assume such cases are represented as strings in

Section 5.3.

It is also important to di�erentiate a singlemixture attribute, that contains amixture

of continuous distributions (e.g., the variable AVG[Temp] from the weather table in

Figure 1.1(d) has repeated values for each zip code on the same date), from a pair of

attributes where each contains a di�erent data type.

Entropy. Entropy quanti�es the amount of “information” or “uncertainty” in the

possible outcomes of a random variable. Let X be a discrete random variable that

assumes values from dom(X) = {1, ..., uX} and has probability mass function p(X).

The entropy H(X) of the random variable X is:

H(X) = E[� log p(X)] = �
uXX

i=1

p(i) log p(i) (2.5)

Analogously, whenX is a continuous random variable whose support is de�ned over the

set X and has probability density function f(X), the di�erential entropy is de�ned as:

H(X) = E[� log f(X)] = �
Z

X
f(x) log f(x) dx (2.6)

These measures can be generalized to multiple variables. Let X and Y be random

variables, whose support values are the ranges [1, uX] and [1, uY], respectively, with

joint probability mass function p(X, Y). We de�ne the joint entropy as:

21

H(X, Y) = �
uXX

i=1

uYX

j=1

p(i, j) log p(i, j) (2.7)

Analogously, if X and Y are continuous with support on X and Y , respectively, and

joint probability density function f(x, y), the joint di�erential entropy is de�ned as:

H(X, Y) = �
Z

X ,Y
f(x, y) log f(x, y) dx dy (2.8)

Mutual Information (MI). The MI between two variables X and Y quanti�es the

amount of information obtained about one variable by observing the other. It is de�ned

as:

I(X, Y) , H(X) +H(Y)�H(X, Y) (2.9)

Intuitively, MI represents the amount of information learned about the target variable

Y after observing the feature X . It is widely used in applications including feature

selection [8], data augmentation [110], and causality analysis [148]. In decision tree

learning, it is known as information gain.

Note that I(X, Y) � 0, with I(X, Y) = 0 only when X and Y are independent

variables. What makes MI particularly attractive is its robustness due to invariance

under reparameterizations: any bijection on discrete values and any homomorphism

on continuous values, including a�ne transformations, has the same MI [102].

Estimating Entropy and Mutual Information. The measures above are de�ned

over probability distributions. However, the distribution is usually unknown in real-life

applications. Therefore, applications often use an estimator based on a �nite number of

observations to approximate the distribution.

22
The classical maximum likelihood estimator (MLE) of entropy is obtained by esti-

mating the probability mass function using frequencies as follows. Given attribute X ,

let N be the number of observations in X and Ni be the frequency of each element i in

X (hence, N =
P

uX

i=1 Ni). The empirical entropy is estimated as:

ĤMLE(X) =
uXX

i=1

Ni

N
log

Ni

N
.

The MLE estimator is known to be systematically biased downward from the true

entropy, and the bias is in�uenced by the number of samples N and distinct valuesmX ,

and the distribution of X [134].

The MLE estimator is only applicable to discrete variables. To estimate entropy

over values from a continuous domain X , one can estimate H(X) from the average

distance to the k-nearest neighbor (k-NN), averaged over all xi 2 X . It is well known

that H(X) ⇡ 1
N�1

P
N�1
i=1 log(xi+1 � xi) + (1) � (N), where is the digamma

function [102].

An estimate for the mutual information (MI) can be obtained by estimating H(X),

H(Y), and H(X, Y) separately and calculating Equation 2.9. When both X and Y are

discrete, estimates can be obtained using the MLE estimator. When both of them are

continuous, MI can be obtained using the KSG estimator [102] which computes I(X, Y)

in a slightly di�erent way to avoid compounding errors of the terms. Alternatively,

if both components are mixtures of discrete-continuous distributions, the MixedKSG

estimator [79] can be used. MixedKSG proceeds similarly to KSG but recovers the

plug-in estimator in discrete regions of the distribution (if they exist). Finally, when

components have di�erent types of distributions (i.e., discrete-continuous or continuous-

discrete cases), another variation of the KSG estimator can be used [133]: �rst, the k-NN

23
distances are computed for each discrete value using only the continuous variable, then

the cardinality among all continuous values for those distances is calculated.

These MI estimators have di�erent biases. The MLE estimator (for the discrete-

discrete case) has a bias proportional to the number of distinct values and sample

size [134]:

I(X, Y)� E[ÎMLE(X, I)] ⇡ mX +mY �mXY � 1

2N
(2.10)

The KSG estimators, on the other hand, have a bias that stems from uniformity assump-

tions on the density and depends on neighbor distances [102]. In Section 5.3, we provide

an experimental comparison of these estimators on multiple datasets.

2.4 Additional Related Work

Besides the work discussed above on join size estimation using k-minimum values

(KMV) sketches, there is a large body of research that includes other approaches for

cardinality estimation [86] as well as sampling and sketching algorithms used to handle

massive data streams [46]. Also related to our work is recent research on e�cient query

processing for web search [153], dataset search [25, 173], and methods that support data

augmentation queries which, given a query dataset, �nd datasets that can be joined or

concatenated [177, 119, 178, 32, 166] or that contain related entities [106, 174]. In the

remainder of this chapter, we provide an overview of each of these research areas.

Cardinality Estimation. Several methods have been proposed that summarize massive

datasets into succinct data structures to support approximate queries using bounded

memory [46]. A widely studied problem in this area is cardinality estimation, i.e.,

estimating the number of distinct elements in a set. Approaches to this problem can be

24
broadly classi�ed into two groups: sampling and sketch-based algorithms. Sampling

algorithms avoid scanning the full dataset and estimate cardinalities based on data

samples. These algorithms have been criticized for their inability to provide good

error guarantees [36, 82]. In contrast, sketch-based algorithms fully scan the dataset

once, compute hashes of the items, and create a sketch that can be used to compute

cardinality estimates [5, 16, 66, 44, 15, 49, 151, 45]. Harmouch and Naumann [86]

categorized algorithms these into di�erent families: count trailing 1s, count leading 0s,

kth minimum values, and linear synopses. Each of these families has their best algorithms

which exhibit di�erent trade-o�s, which were studied in detail in [86].

While the best algorithms based on counting trailing 1s an 0s (such as HyperLogLog

(HLL) [74]) are able to provide better accuracy per bit, it is not clear how they can be

extended to estimate cardinalities of value-sets that satisfy arbitrary properties not

known apriori, before the sketch is built. Algorithms from the kth minimum values

(KMV) family, on the other hand, can be extended for this purpose at the cost of storing

the sample identi�ers in addition to their hashed values [50]. The reason why HLL-like

algorithms cannot estimate such properties is that, HLL does not maintain any sample

of identi�ers from the data. For this same reason, HLL sketches are not suitable for

join-correlation sketches, which require the alignment of numeric values based on their

join key values. CSK sketches builds on the KMV family and derives a new sketch that is

able to align numeric values based on their key hashed values to reconstruct a random

sample that can ultimately be used for estimating correlations. While in Chapter 4 we

focus on numerical correlations and in Chapter 5 we focus on mutual information, the

sketches we proposed can be used to compute other statistics that are based on paired

numeric values.

25
Join Size Estimation. The ability to accurately estimate join sizes is crucial for query

optimizers. Acharya et al. [1] have established very early results on the hardness of

sampling over joins, in the general foreign-key setting, by showing that it is generally

not possible to create a uniform random sample by simply joining uniform random

samples from each independent relation. Since then, approaches have been developed

to address this problem, which can be broadly grouped in the following categories:

sampling, sketching, indexing, and machine learning.

Sketching-based algorithms [135] leverage the techniques mentioned above to create

sketches on the join attribute and ignore all the other attributes. These algorithms usu-

ally provide accurate estimates of the join size on queries without selection predicates.

In order to support queries with predicates, however, 2-way joins need to be trans-

formed into 3-way joins by creating a additional sketch to represent the predicate [38],

which substantially deteriorates the estimation quality [156].

Sampling-based algorithms keep a sample of the tuples, apply predicates on the

sample to select the tuples that satisfy them, and �nally estimate the join size using only

these tuples. Multiple tuple-sampling strategies have been proposed [1, 70, 156, 38].

Recent works [156, 38] incorporate ideas similar to the strategies used in this dissertation

and in the KMV sketches family: they use a random hashing function to map join values

to the unit range and then select the tuples based on some selection strategy. For

instance, the strategy adopted by the correlated sampling algorithm [156] is equivalent

to the strategy of the G-KMV sketch [166], where tuples are selected if the hashed keys

are smaller than a probability threshold. In contrast, CSK and TUPSK sketches include

tuples in the sketch up to a �xed number, which avoids assigning too much space to

large datasets and leads to more predictable performance for query evaluation.

26
Index-assisted algorithms [107, 109, 77] rely on indexes to perform the sampling.

The use of indexes allows algorithms to retrieve only tuples that are relevant to the

query, thus avoiding worst-case scenarios where no samples are available to perform

estimations. A drawback of this approach is that indexes are not always available, and

repeated index look-ups become expensive when the index does not �t into the main

memory.

When a join involves keys of multiple tables and highly selective predicates, it

becomes harder to estimate the join size because the join keys intersection gets increas-

ingly smaller. Recently proposed approaches based on machine-learning [100, 167] are

able to improve the estimation performance for highly-selective worst-case queries.

There are key di�erences between our work and approaches to join-size estimation

algorithms both in terms of their goals and challenges. Notably, our sketches (CSK

and TUPSK) do not need to deal with selection conditions. Moreover, CSK assumes

that one-many as well as many-many relationships can be reduced to one-one joins

(Section 4.2), allowing us to create uniform random samples of the resulting join table.

TUPSK handles the many-one case, where repeated values in the right table can be

aggregated but the repeated values on the left cannot.

Dataset Discovery and Search. The problem of �nding related datasets (via unions

and joins) on the Web and in data lakes, to unlock the utility of a provided table has

been studied since [141]. More closely related to our work are the approaches that

retrieve datasets that are “joinable” with the query dataset. To measure joinability, the

most common measure is the Jaccard Containment (JC) similarity, which is de�ned as

JC(X, Y) = |X \ Y |/|X| whereX is the set of values of the query table join attribute,

and Y is the set of values of the retrieved table join attribute. While algorithms such as

JOSIE [177] provide an exact solution to this problem, others such as LSHEnsemble [178],

27
GB-KMV [166] and Lazo [32] propose approximate approaches. Nargesian et al. [119]

proposed a probabilistic solution to the problem of searching for unionable tables within

massive data repositories. While these works focus on either �nding datasets that are

joinable or unionable, we focus on �nding joinable tables that have strongly correlated

columns.

The methods studies in this dissertation are complementary to the work of Kumar

et. al. [103, 142], where they propose conservative decision rules to predict when the

features obtained through a join can improve models. In contrast to our methods that

aim to estimate statistics over joined tables without materializing the join, they derive

a simple rule that predicts whether it is safe to not perform the join at all using only

statistics derived from the join key on the base table.

Applications of these methods include decision support, data mining, ML model

improvement, and causality analysis, and have resulted in several end-to-end systems.

For instance, Data Civilizer [58] is a system that uses a linkage graph to help identi�-

cation of relevant data to a user task. JUNEAU [176] formalized multiple data search

tasks, table relatedness measures (e.g., column and row overlap, provenance, textual

similarity), and proposed linear combinations of these measures for providing data

search within data science environments. ARDA [39] is a system that focuses on auto-

matic data augmentation, i.e., how to select the best features discovered from external

dataset search systems. In Chapters 4, 5, and 6 we address an orthogonal problem:

instead of building an end-to-end system, we focus on e�cient data discovery and

estimation of data relationships, such as correlation and mutual information, over joins.

Our techniques can be integrated as relationships in linkage graphs [58, 73] or as a

table relatedness measure [176] to improve search applications.

28
Feature Selection. There are three main classes of feature selection methods (see [157]

for a survey): �lter methods, which start from a join over all tables and use a lightweight

proxy such as correlation to remove features; wrapper methods, which incrementally

choose features based on the (more expensive) downstream task either by joining one

table/feature at a time (forward selection) or removing one at a time from a join over

all tables; and embedding methods, which use a proxy to select multiple features at

a time and then measure using the downstream task. This dissertation is related to

�lter methods since it enables the estimation of correlations and MI, which are proxy

measures commonly used in several feature selection algorithms [157, 84, 28].

Mutual Information Estimation. When the number of available observations is

large, computing the MI can be expensive. Various papers have considered e�cient

approximation algorithms, with con�dence intervals, for entropy estimation via sub-

sampling [159, 37], which can be extended to MI. As we showed in Section 5.2, our

methods compute the entropy over a subsample recovered from sketches to estimate

the MI between two variables.

Some approaches considered MI estimation over data streams [94, 98, 22]. Ferdosi

et. al. [72] show how to approximately �nd a pair of columns having the largest mutual

information in sub-quadratic time, however, they assume binary-valued attributes and

that table joins are materialized. We are not aware of any work addressing the problem

of estimating MI while avoiding the cost of materializing the entire join.

There is also an extensive body of research on di�erent estimators for MI, some of

which we cover in Section 2.3. Additionally, recent work has shown that no estimator

can guarantee an accurate estimate of mutual information without making strong

assumptions on the population distribution [116]. While previous work had provided

29
intractability results for speci�c estimators, such as KSG [78], this result is universal to

all MI estimators.

Correlation Estimation. Correlation measures have been studied extensively in the

literature (Section 2.2). Most works in this area focus on statistical inference, i.e., given

samples of a potentially in�nite population, the goal is to infer properties by deriving

estimates or performing statistical tests. Recent work has focused on reducing bias

and estimation errors [18], hypothesis testing [17, 57], or con�dence intervals (CI)

that work well under non-normal distributions [20, 19, 91]. Di�erently from existing

CIs, we develop a CI for sub-samples based on concentration inequalities that make

no distributional assumptions. This setting is particularly attractive for sketching

algorithms that perform a single pass over the data, allowing us to leverage statistics

about data (e.g., the range of the values) that would otherwise be unknown.

Web Tables and Ad-hoc Table Search. Another related line of work focuses on

discovering and performing automatic extensions of web tables that contain entities

in textual form [174, 106]. Lehmberd et. al. [106] propose an engine that searches an

indexed corpus for additional data describing the entities contained in a user-provided

dataset, and automatically extends its input table with the discovered information.

Zhang et al. [173, 175] formalize the problem of ad-hoc table retrieval using semantic

similarity, and propose machine-learning methods for addressing the problem. While

these works retrieve semantically similar tables that contain entities, our focus is on

retrieving tables that are numerically related, such as datasets that contain columns

that are highly correlated with a column in the input query dataset.

Search Engine Architectures and Fast Top-k Retrieval. Our work builds upon

prior work on e�cient query processing algorithms for top-k document retrieval [26,

60, 154, 146]. We refer the reader to [153] for a comprehensive survey on the topic.

30
While these techniques have been traditionally used for retrieving textual documents

for scalable web search, we extend them with data sketching methods to e�ciently

retrieve correlated tables. In particular, we use an implementation of the Block-Max

WAND [60] dynamic pruning algorithm for fast retrieval of sketches. State-of-the-art

top-k query processing algorithms rely on dynamic pruning algorithms that require a

property known as non-negative monotonicity, which means that the scores computed

for each term in the index cannot be negative [153, 71]. As we discuss in Section 6.2.1,

this property prevents the use of these algorithms for correlated table retrieval. In

Chapter 6, we show that by decomposing the retrieval into two smaller queries, we

can leverage these algorithmic optimizations. Our methods also use a technique that

has been described as cascading [153]. More speci�cally, our proposed hashing method

allows for the e�cient retrieval of correlated columns (with a high recall), which can

then be passed onto another cascading layer that re-ranks candidates using sketches to

improve the overall ranking.

31

Chapter 3

Auctus: A Search Engine for Data

Discovery and Augmentation

With the push towards transparency and openness, scientists, governments, and

companies have been increasingly publishing structured data on theWeb. Google Dataset

Search alone indexes over 30 million datasets [7]. The availability of these data creates

opportunities to answer many important scienti�c, societal, and business questions.

The Need for Data Discovery. While data are abundant, �nding relevant data is

di�cult. Data are spread over a large number of sites and repositories. Recognizing

this challenge, a number of approaches have been proposed to organize and index data

collections [35], from domain-speci�c repositories such as NYCOpenData, which collects

datasets from the various NYC agencies [121], general data portal infrastructure and

data lakes [147, 54], to Google Dataset Search, which indexes a wide range of datasets

published on the Web [25]. While these present a signi�cant step towards simplifying

data discovery, they have an important limitation: they only support simple, keyword-

based search queries over published dataset metadata. This greatly limits a user’s ability

32

Figure 3.1: Searching for datasets that mention “taxi" and contain records within the
NYC area for the 2016-2021 period.

to express information needs. In addition, published metadata is often incomplete, and

in some cases it can be inconsistent with the actual data. Thus, relying solely on the

metadata also limits the discoverability of datasets.

Chapter Contributions. In this chapter, we introduce Auctus, an open-source dataset

search engine that was designed to support data discovery and augmentation. It supports

a rich set of discovery queries: in addition to keyword-based search, users can specify

spatial and temporal queries, data integration queries (i.e., searching for datasets that

can be concatenated to or joined with a query dataset), and they can also pose complex

queries that combine multiple constraints, as shown in Figure 3.1. These queries are

enabled in part by a data pro�ler [53] that we developed to extract useful information

from the actual datasets. This includes not only summaries (or sketches) of column

33
contents, but also their data types. In particular, it detects columns that contain spatial

and temporal information. This information is then used to construct indices that

support e�cient query evaluation. Users can explore large dataset collections through

an easy-to-use interface that guides them in the process of specifying complex queries.

To help users identify relevant datasets, Auctus displays snippets that summarize the

contents of datasets.

Auctus has been developed in the context of the DARPA D3M program [51],

and it has been used in production and to support research of di�erent groups in the

project [138, 90, 39, 11]. In this chapter, we give an overview of the architecture and fea-

tures of Auctus (Section 3.1) and discuss a few use cases that it enables (Section 3.2).

3.1 The Auctus System

3.1.1 Auctus Architecture

The high-level architecture of Auctus is depicted in Figure 3.2. In what follows,

we describe its key components.

Data Ingestion. Auctus makes use of plugins to retrieve datasets from repositories

using their APIs. This makes the system extensible and able to ingest data from many

di�erent sources. Currently, it supports Socrata [147] (a platform for open government

data), Zenodo [172] (open-access data repository), the World Bank Open Data [163]

(datasets on global development), among others. Auctus also allows users to upload

their own datasets.

Pro�ling. Once datasets are ingested, Auctus pro�les them to infer relevant metadata

necessary to support discovery queries as well as to construct dataset summaries for

34

Figure 3.2: Overview of Auctus’ architecture.

result presentation. The pro�ler performs di�erent tasks, including: type detection, i.e.,

it detects whether columns correspond to categorical, numerical, spatial, or temporal

attributes; type-dependent statistics computation (e.g., frequency of values, mean, and

variance for numerical values), and data summarization (see below).

Storing Data and Data Summaries. Since Auctus was designed to serve as a dataset

discovery system, it stores dataset summaries instead of the full datasets. These sum-

maries are concise and su�cient to create the indices required to answer all queries

supported by the system. Currently, Auctus creates summaries for categorical, nu-

merical, spatial, and temporal attributes. The data summaries generated by Auctus

are represented by the ranges of their corresponding attributes. During the search

phase, Auctus uses these summaries to estimate the size of the intersection between

two attributes, concluding whether a join is feasible. To estimate join intersections

well, Auctus captures �ne-grained ranges for data attributes by using the clustering

algorithm k-means. This strategy produces the desired results while also being e�cient.

Auctus also stores provenance information to enable the retrieval of the datasets.

35
This allows the system to perform augmentations, and users to download the datasets.

Auctus can also cache datasets for e�ciency purposes.

Indices. After the metadata are generated, including data summaries, they are indexed

in an Elasticsearch [68] server. Numerical and temporal summaries are indexed using

range data types, and spatial summaries are indexed using geo-shape data types. To

support joinable dataset search, we use Lazo [32], which is a method for set-overlap

search based on MinHash sketches and locality-sensitive hashing (LSH), to build an

index for categorical attributes.

Querying and Ranking. Auctus supports queries that combine multiple constraints

including keywords, temporal, spatial, data type, and data source. The system also

supports data integration queries: Given an input dataset DQ, Auctus allows the user

to search for datasets that can be concatenated to or joined with DQ. The dataset DQ

must �rst be uploaded using a provided API or selected from the set of indexed datasets.

The system will then generate a dataset pro�le which is used to probe those indices that

support join and union. Finally, the lists of matching datasets from di�erent indices are

merged, ranked, and returned as search results.

Join Search. To �nd other datasets that can be joined withD, Auctus �rst searches, for

each attribute a of D, which other attributes, in the index that corresponds to a’s data

type (e.g., temporal attributes searched in the Elasticsearch range index, or categorical

attributes probed against the Lazo index), have summaries intersecting the summary of

a. Every dataset that has at least one intersecting attribute is a potential join result.

Union Search. To �nd datasets that can be concatenated withD, the indices are searched

for any dataset that has attributes with the same data types present in D, as well as

36
similar names. Name similarity is computed with the fuzzy query in Elasticsearch.

Results from union searches may match only a subset of D’s attributes.

Ranking. The results of join and union searches, after being �ltered based on query Q,

are ranked and returned as D. Join results are ranked based on the intersection of the

summaries; union results are ranked based on the Levenshtein similarity between the

names of the matching attributes.

Augmentation. Besides providing search capabilities for data augmentation, Auctus

also performs the actual augmentation. Users can choose a datasetR 2 D, and Auctus

will materialize it (using the provenance annotated in the metadata) and perform the

join or union operation with D, returning the new, augmented dataset A. If multiple

attribute pairs match between R and D for a join operation, users can choose which

pair(s) they want for the join. For temporal and spatial joins, the attributes are translated

into the same resolution before the augmentation.

3.1.2 Auctus User Interface

Auctus provides an easy-to-use interface where users can query for datasets,

explore search results including data exploration and augmentation options, explore

ingested datasets, and upload new datasets.

Data Discovery Queries. Users can query indices by specifying keywords and

constraints using various �lters (see Figure 3.3(A)).

Temporal and Spatial Search. Users search for datasets by specifying a date range

(Figure 3.1) – datasets containing a temporal column that overlaps with that range will

be retrieved. They can re�ne the search by specifying a temporal resolution (e.g.,

year). To perform a spatial search, users can either draw a bounding box around a

geographical area on the map (Figure 3.1), or specify an administrative area, which

37

Figure 3.3: Components of Auctus’ user interface: keyword and �lter-based search
box (A); search results (B); dataset-snippets (B1); dataset summary (B2); dataset upload
(C); dataset collection statistics (D).

Auctus translates into a polygon. Datasets containing spatial attributes that overlap

with the search polygon are returned.

Source �lter. The source �lter allows users to restrict the data sources of interest, and

only results from the selected sources are retrieved.

Data Type �lter. The data type �lter allows users to search for datasets based on the

types of their attributes, e.g., categorical, numerical, spatial and temporal, which were

inferred by the pro�ler.

Data Integration Queries. The related �le �lter allows users to �nd datasets that can

augment a given input dataset (see Figure 3.4a(A)). The user can upload the input dataset

or select a dataset from a set of search results. Result snippets for data integration

queries include an “augment options” button, that allows users to request and customize

the augmentation to be performed by Auctus.

38

(a)

(b)

(c)

Figure 3.4: (a) A data integration query in [A], and the augmentation interface in [B].
(b) Data Summary views. (c) Upload page.

39
Result Presentation and Exploration. Unlike Web documents which can be sum-

marized using short text snippets, datasets have many di�erent facets that the user

must consider to determine their relevance. Thus, an important challenge for Auctus

is how to present search results. Figure 3.3 shows the results for the query speci�ed

in Figure 3.1. On the left, there is a list of search results displayed as snippets (Figure

3.3(B1)). Users can select a dataset to inspect its details (Figure 3.3(B2)), which include

description, source, attribute names and types, as well as a summary of the dataset’s

contents. For spatial datasets, a visualization showing the geographical extent covered

by the dataset is displayed. The summary also includes a sample of the dataset records

and statistics about its columns (Figure 3.4(b)). The tabs above the dataset sample allow

for the visualization of these statistics in di�erent levels of detail. For example, Detail

View shows the columns’ value distributions.

Augmentation. If the user provides an input �le through the Related File �lter, the

snippets display a button “Augment Options” under each result on the left. If the user

clicks on this button, the augmentation interface will be shown (see Figure 3.4a(B)). If

the result is a union, users can select matched pairs of columns, and the columns from

the result (right) will be appended to the matching columns of the input data (left). If

the result is a join (an example is shown in Figure 3.4a(B)), users can select the columns

to be matched at the top of the augmentation screen. Those are the “join keys” that

determine which records from the input data should be matched with records from

the selected result. Under this area, there is an interface to include columns from the

selected result into the augmented table. Users can grab the desired columns from the

“available columns” area, drag them to the “included after merge” box, and drop them

over the aggregation function they wish to use for that column.

40
Uploading Data and Curating Metadata. Users can add new datasets to Auctus.

After loading a data �le, Auctus automatically infers its data types with our datamart-

pro�ler library [53]. As any method for type inference, our pro�ler is not fool-proof

and can derive incorrect results. To address that, Auctus enables users to correct

data types manually, and to provide additional annotations for the columns. Auctus

also displays a dataset sample so that the user can verify if the detected data types

are correct, and check the uploaded data. Additionally, Auctus provides support for

custom metadata �elds (e.g., data source or grid size). Since these �elds can vary widely

for di�erent applications, we de�ned a �exible con�guration schema that allows users

to customize them for di�erent deployments. The upload page is shown in Figure 3.4c.

3.1.3 Scalability and APIs

Auctus has been implemented with scalability in mind: the search engine is

entirely containerized using Docker [61]. Each data discovery plugin is an independent

container, allowing multiple plugins to be executed in parallel. Auctus can also spin

up as many pro�ling and query containers as required in response to load. Our system

can be accessed via a Web UI or programmatically via Python and REST APIs. So far,

we have indexed over 19,000 datasets.

3.2 Use Cases

Bicycle Usage Prediction. Predicting the number of daily bicycle trips is an important

step towards implementing better policies for this means of transportation in NYC.

Consider that an expert from the NYC department of transportation decides to build a

model using the East River Bicycle Trips data. This department installed automated

41
counters in all East River bridges, which provide the number of bikes crossing them on

a daily basis. This number can be used as a proxy for the overall bicycle usage in NYC.

Besides daily bicycle counts, the data also contains maximum daily temperatures for

NYC. Unfortunately, her initial dataset only covers bicycle usage for April 2020, which

is not very informative. To take into account a larger period of time, she uses Auctus

to �nd compatible data for more months of 2020, which can then be concatenated to her

original input data within our system. When using a random forest regressor to predict

the number of bicycle trips using daily temperatures as amodel feature, she obtains anR2

score close to 0.25. She is relying on a single feature tomake her predictions, so hermodel

is probably under�tting. To improve it, she uses Auctus again to �nd and augment her

current input data withweather information, including daily rainfall levels. TheR2 score

then increases to approximately 0.56, which represents a substantial improvement. A

video demonstrating this use case is available at http://bit.ly/auctus-demo.

Con�ict Forecasting. While analyzing con�ict forecasting problems, researchers often

use predictive modeling to guide policy-making decisions, and to assess and compare

theories of con�ict [64]. In this context, it is crucial to identify new data sources, merge

those data, and evaluate the contribution of di�erent features. Furthermore, most

con�icts materialize as events, and if they occur in heterogenous spatio-temporal levels

and need to be analyzed in tandem, data integration can be challenging. Consider

that a researcher is studying con�ict events in Africa. She uses the grid [128] dataset

for Africa with con�ict events aggregated into quarterly counts to predict state-based

con�icts. Since protest events data can be very useful, and since her grid dataset does

not have any measure of protests, she decides to use Auctus to discover and join this

type of dataset to her input data. She uses "protest" as a keyword, and also uploads

the grid dataset as an input query in Auctus. After running the query, the highest

http://bit.ly/auctus-demo

42
ranked result is the Social Con�ict Analysis Database (SCAD). To verify its suitability,

she explores the dataset through the "View Detail" tab. After inspecting the Summary

Data view, she realizes that SCAD contains information not only on protests, but also

on other destabilization events. She can also quickly see that it captures events in Africa

because of the map visualizations, and also �nds spatio-temporal matches. She then

checks the possible augmentation options moving in to the augmentation interface. As

shown in in Figure 3.4a(B), Auctus automatically detects joinable columns. She then

selects the temporal and spatial levels of her interest, and uses aggregation functions

to count the number of destabilizing events and to sum the number of fatalities. Next,

she presses the augmentation button and all the events in SCAD become aggregated

into the grid dataset. The augmented dataset can be used to explore new research

questions, such as whether the number of destabilizing events at time t is a predictor

for state-based violence at time t+1.

43

Chapter 4

Evaluating Join-Correlation Queries

using Sketches

In this chapter, we introduce join-correlation queries: a new class of data search

queries that �nd tables that can be joined with and that also contain attributes that are

correlated with those of a given query table. They are useful for uncovering correlations

between numerical columns in unjoined datasets (such as in discovery tasks introduced

in Examples 1 and 2 from Chapter 1). We recall the de�nition of Join-Correlation queries

introduced in Chapter 1:

De�nition 1 (Join-Correlation Query). Given a column Q and a join column KQ from

a query table TQ, a join-correlation query �nds tables TX in a dataset collection such

that TX is joinable with TQ on KQ and there is a column C 2 TX such that Q is strongly

correlated with C .

One naïve approach to answer this query is to �rst identify all joinable tables, and

then explicitly calculate correlations between Q and all columns of the discovered

tables. The main bottleneck in this approach is downloading the joinable datasets and

44
computing their joins with the query table. Large tables may not �t in memory, and the

cost of executing join operations can be prohibitively high.

Additionally, some correlation measures, such as Spearman’s correlation, require

sorting the data before computing the correlation. This problem is compounded for

queries that return multiple datasets and require numerous joins and correlation com-

putations. For reference, joining a dataset containing taxi pickups (about 1GB) with a

precipitation dataset (about 3MB) took about 29 seconds (on an Intel Core i5 2.4GHz

CPU). After the join, it took about 5 seconds to calculate the Spearman’s coe�cient

between the number of pickups and precipitation levels.

While previous research has proposed e�cient methods to support queries that

retrieve datasets that can be joined with a given query dataset [178, 177, 32, 166], these

methods alone are not su�cient to support join-correlation queries since joining tables is

still an expensive operation. Next, we describe a more e�cient approach for evaluating

this type of query.

4.1 Ranking Datasets via Correlation Estimates

To reduce the evaluation cost of join-correlation queries, as an alternative to using

the entire data, we investigate the use of data sketches (also known as synopses) to

estimate the results. Data-intensive algorithms often can be optimized by reducing the

size of the input data with sampling techniques [46], at the cost of obtaining approximate

results. In our setting, however, naïvely sampling data to estimate correlations does

not work: it is not possible to sample columns to estimate the correlation without

�rst executing the join. To solve this problem, we propose a sketching method for

estimating correlations between columns from unjoined datasets based on data sketches.

45
These sketches are constructed using only data from individual tables (independently),

and thus they can be pre-computed and indexed to support the discovery of joinable

datasets and fast correlation estimation at query time. In this dissertation, we refer to

such sketches generally as “correlation sketches”. In the remainder of this chapter, we

propose a particular method of building correlation sketches that we refer to as CSK.

The CSK method constructs a sketch SX for any given pair of columns hKX , Xi

that belongs to a table TX , where KX is a categorical column and X is a numerical

column. A pair of sketches SX and SY (for tables TX and TY respectively) can be used

to estimate the correlation between the numerical columnsXX./Y and YX./Y , generated

after joining tables TX and TY on columns KX and KY . Note that TX and TY are

heterogeneous and need not have the same join keys or the same number of rows. As

such, our sketching method enables the construction of an index for a large number of

tables that can be used to support both joinability queries and to estimate the correlation

between a query column and indexed columns.

The CSK method builds upon and extends state-of-the-art hashing techniques [5,

15, 16, 166, 92]. In Section 4.2, we prove that our sketches can reconstruct a uniform

random sample of the paired columns XX./Y and YX./Y . This leads to an important

property: besides correlations, our sketching approach can handle any statistic that can

be estimated from random samples (e.g., entropy and mutual information). While we

focus on numerical correlation measures in this chapter, we extend this algorithm in

Chapter 5 to support di�erent data types and measures such as Mutual Information.

We show both theoretically (Section 4.3.3) and experimentally (Section 4.4) that

our approach is e�ective and provides accurate estimates for correlation. Moreover,

our analysis provides mathematical tools for dealing with approximation errors typical

of sketching algorithms. For join-correlation queries, these errors may lead to false

46
positives: columns are returned which seem more correlated, based on the sketch, than

they actually are. This problem is an issue for queries over large dataset collections, as

there can be many false positives, simply by chance. To address this issue, we derive

sub-sample con�dence interval bounds to estimate approximation errors. Our bounds

are based on simple column statistics like sample size and data range and, in contrast to

prior work [20, 19, 10], do not rely on distributional assumptions. We use these bounds

to design a set of scoring functions that rank datasets based on both their estimated

correlation with a query dataset, and on our con�dence in that estimate.

In Section 4.4, we evaluate our method experimentally using both synthetic and

real-world datasets. A comparison of the estimates produced by CSK sketches with

the actual correlation values shows that it derives accurate estimates. In addition, we

assess the e�ectiveness of di�erent ranking functions that leverage CSK sketches, and

show that they improve ranking performance up to 193% in terms of mean average

precision when compared to a scoring scheme based on overlap size, commonly used

for joinability queries [32, 178, 177].

Chapter Contributions. We introduce join-correlation queries, a new class of queries

to �nd correlated columns within a collection of unjoined tables, and propose a new

method to e�ciently support such queries over large dataset collections. To the best of

our knowledge, ours is the �rst work that addresses this problem. The remainder of

this chapter is organized as follows:

• In Section 4.2, we propose CSK sketches, a new sketch that simultaneously

summarizes information about joinability and correlation, allowing the estimation

of di�erent correlation measures between columns of unjoined datasets.

47
• In Section 4.3, we derive new correlation con�dence interval bounds that allow us

to measure the risk of estimation errors. These bounds serve as the basis for the

design of scoring functions that use correlation sketches to rank the discovered

columns.

• We perform an extensive experimental evaluation of our method and show that:

CSK sketches estimate correlations with good accuracy in both synthetic and real

data for di�erent correlation measures; and the scoring functions we propose are

e�ective and derive high-quality rankings (Section 4.4).

4.2 Estimating Join-Correlation

Before presenting CSK sketches, we introduce notation and formally de�ne the join-

correlation estimation problem. Consider a query table TX composed of a categorical

columnKX and a numerical columnX , and a table TY in a dataset collection containing

a categorical column KY and a numerical column Y (we discuss below how multi-

column tables are handled). ColumnsKX andKY are the join attributes, i.e., TX./Y =

⇡k,xk,yk
(TX ./KX=KY TY) = {hk, xk, yki : k 2 KX \KY }. We denote by xk and yk the

numerical values of X and Y (respectively) associated with the row identi�ed by key k.

This is illustrated in Figure 4.1.

De�nition 2 (Join-Correlation Estimation). Given two tables TX and TY , we aim to

e�ciently estimate the correlation rX./Y of the numerical attributes XX./Y and YX./Y in

TX./Y without having to compute the join and aggregations for TX and TY .

One approach to estimate rX./Y is to use data sketches instead of the full datasets. To do

so, we can build sketches SX and SY that serve as summaries of hKX , Xi and hKY , Y i

respectively. However, naïve approaches do not yield useful summaries.

48
TX

KX X
2021-01 6.0
2021-02 4.0
2021-03 2.0
2021-04 3.0
2021-05 0.5
2021-06 4.0
2021-07 2.0

TY
KY Y

2021-01 5.5
2021-01 4.5
2021-02 3.9
2021-02 2.0
2021-03 4.0
2021-03 1.0
2021-04 4.0

TX./Y

KX./Y XX./Y YX./Y

2021-04 3.0 4.0
2021-03 2.0 2.5
2021-02 4.0 3.0
2021-01 6.0 5.0

Figure 4.1: Table TX./Y is the join of the input tables TX and TY , aggregated using the
mean function. Correlation sketches e�ciently reconstruct a sample of the table TX./Y

to estimate the correlation between the columnsXX./Y andXX./Y , without computing
the full join.

Limitations of Random Sampling. Consider, for example, two numerical vectors

of size n, SX and SY , randomly sampled from the numerical columns X 2 TX and

Y 2 TY , respectively. The correlation between SX and SY is not a valid estimate of

the correlation between XX./Y and YX./Y because the pairs hx 2 SX , y 2 SY i are

not aligned. By sampling directly from X and Y , we lose information on what keys

are associated with what numerical values, which is necessary to align pairs hxk, yki.

Another alternative would be to include the keys by randomly sampling rows from

original tables TX and TY , and then joining the row samples. However, since the �nal

set of keys k 2 KX./Y depends on input columnsKX 2 TX andKY 2 TY , it is unlikely

that the keys selected from KX and contained in KX./Y will also be selected from KY .

We discuss this issue more formally in the next subsection.

4.2.1 Correlation Sketches (the CSK method)

Correlation Sketches address the limitations of naïve approaches by enabling the

reconstruction of a uniform random sample of the joined table. Our method uses hashing

techniques to carefully select a small sample of tuples hk, xki from a table TX =

49
SX

h(k) hu(k) xk

bac52e98 0.48 2.0
16dab449 0.34 2.0
26f79756 0.47 3.0
4da33cf5 0.34 6.0

SY

h(k) hu(k) yk
16dab449 0.34 2.5
bd5a7c1f 0.89 3.0
26f79756 0.47 4.0
4da33cf5 0.34 5.0

SX./Y

h(k) xk yk
16dab449 2.0 2.5
26f79756 3.0 4.0
4da33cf5 6.0 5.0

Figure 4.2: The tables SX and SY represent correlation sketches for the tables TX and
TY , for sketch size n = 3 and mean aggregation. While we explicitly show the column
hu(k) for illustrative purposes, it does not need to be stored as it can be easily computed
from h(k).

hKX , Xi, that is used to build a sketch that enables data from di�erent tables to be

aligned and correlations to be estimated.

Sketch Construction. We use two di�erent hashing functions to create the sketch

SX for table TX . The �rst one, h, is a collision-free hash function that randomly and

uniformly maps key values k 2 KX into distinct integers. Given that these integers h(k)

are unique, they are used as the tuple identi�ers in sketch SX . Next, we use hashing

function hu to map integers h(k) to real numbers in the range [0, 1], uniformly at

random. The function hu plays a key role in the selection of the n tuples that compose

the sketch SX : the tuples that correspond to the n smallest hu values are the ones

included in the sketch. More formally, we select n samples of pairs hh(k), xki with

minimum values of hu(k), i.e., SX = {hh(k), xki : k 2 min(k, hu(k))}, wheremin is a

function that returns a set containing the keys k with the n smallest values of hu(k).

To illustrate this, consider the example table TX in Figure 4.1. To build a correlation

sketch, we apply the hashing functions to each one of the keys k 2 KX and then select

the n tuples associated with the smallest hashed values, which are used to create the

correlation sketch SX in Figure 4.2.

50
Once these sketches are created (independently) for separate tables, they are used

to estimate correlation by computing a joined sketch SX./Y , also illustrated in Figure 4.2.

SX./Y has a row for every key k that appears in both SX and SY . As we argue in

Theorem 1, this table contains a uniform random sample of paired numerical values

from TX./Y , so it can be used directly to estimate correlation or any other statistic

over TX./Y .

The accuracy of an estimate, however, depends on the size of this sample being

large, i.e., on SX./Y having many rows. The key idea behind our method is that, by

selecting samples using hu, we introduce dependence that increases the probability of

SX and SY including the same keys [92]. To see this, consider an extreme example

where bothKX andKY have the same set ofN distinct keys. Suppose that n key-value

tuples hk, xki are included in SX uniformly at random (without hashing), and n are also

included in SY , independently and uniformly at random. If a key k is included in SX ,

the probability that it also appears in SY is n/N . Thus, the expected number of rows

in SX./Y is n2/N , vanishingly small when the sketch size n is much smaller than N .

With little or no key overlap, we have no way of e�ectively estimating correlation from

SX./Y . On the other hand, when the inclusion is determined by the values of hu(k), the

events become dependent: if k is included in SX , k must also be included in SY . In this

case, the number of rows in SX./Y increases to n, the maximum number possible. In a

less extreme case where KX and KY do not have the exact same keys, the expected

number of keys included in both sketches will depend on the Jaccard similarity between

the key sets, but in any case, will be much larger than the n2/N obtained by uniform

random sampling.

Note that the use of a hashing function such as hu to introduce dependence is

not a new idea — it has been used in many algorithms [15, 156, 50, 92, 166]. Part of

51
our contribution lies in the combination of hu with another function h to generate

tuple identi�ers that allow the alignment of paired data samples at estimation time. CSK

sketches contains both the n minimum hashed values h(k) and their corresponding

numerical values xk from column X . By keeping the hash of the key, it is possible to

align the numerical values with values in other tables that are associated with the same

key, and by storing the numerical values, we can estimate the correlations between the

numeric columns.

HandlingRepeatedKeys. The process described above assumes that the keys uniquely

identify each row in a table. However, real-world data often contain repeated categorical

values (as in column KY in Figure 4.1). In such cases, there is a set of values associated

with each distinct key k. For instance, in Figure 4.1, the set of values {5.5, 4.5} is

associated with the key “2021-01”. Because correlation is only de�ned for sets of

paired values, downstream applications that use correlation typically aggregate the

numeric values associated with a key into a single number. This can be done by applying

a user-de�ned function (e.g., mean, sum, maximum, minimum, �rst, last) to perform the

aggregation before computing the correlation. In Figure 4.1, the column YX./Y contains

the aggregated values of Y using the mean function after the join between TX and TY .

Repeated keys can be handled during sketch construction: whenever a key k that

already exists in the set of hashed minimum values is found again at time t, an aggregate

function f can be applied to compute the value for time t by aggregating the existing

xt�1
k

with the new incoming xk, i.e., xt

k
= f(xk, x

t�1
k

). As long as the aggregation can be

computed in a streaming fashion, the sketches can also be computed with a single pass

over the data. SY in Figure 4.2 shows a sketch constructed from table TY in Figure 4.1,

using mean as the aggregate function f .

52
Note that the choice of function a�ects the semantics of the data, thus this selection

must be made by taking into account the requirements of the downstream application

that makes use of the sketches. Nonetheless, our sketch is agnostic to such aggregations,

and can easily be extended to take as input one or more functions. Additionally, note that

performing aggregation over repeated keys in one of the tables may not be desirable in

some situations. For example, when performing left outer joins to bring in new features

for training machine learning models, the number of rows in the left table must kept

intact. In Chapter 5 we describe another sketch that can better handle these situations.

Sketches for Multi-Column Tables. For simplicity, we described how to build

sketches from a binary table, but it is trivial to extend the process to multi-column

tables. For example, if a table contains multiple columns, TXZ = {KXZ , X, Z}, the

correlation sketch could be extended to SX,Z = {hh(k), xk, zki : k 2 min(k, hu(k))}.

Alternatively, one could simply build one sketch for each pair of keys and numeric

columns, e.g., hKX , Xi and hKZ , Zi.

4.2.2 Estimating Join-Correlation

An important property of CSK sketches is that it enables the construction of a

uniform random sample of the join TX./Y . This can be formally stated as:

Theorem 1. The set of paired numeric values hxk, yki 2 SX./Y is a uniform random

sample of the set of paired numeric values hxk, yki 2 TX./Y .

Common measures of correlation, such as Pearson and Spearman, can be approximated

with a sub-sample of data from those columns, as long as that sample is taken uniformly

at random. Theorem 1 forms the basis of our algorithm for join-correlation estimation,

which consists of two steps: (1) create the sketch table SX./Y by performing a join

53
between two sketches SX and SY on their hashed keys h(x) (as illustrated in Figure 4.2),

and (2) apply any sample correlation estimator to the numerical data ofSX./Y to estimate

the correlation between columns X and Y in TX./Y .

Proof of Theorem 1. Let TX./Y = hKX./Y , XX./Y , YX./Y i be the table resulting of the

join between TX = hKX , Xi and TY = hKY , Y i. By de�nition, KX./Y = KX \KY .

Let g = hu(h(k)) be the composition of the hash functions h, hu described above; g

maps keys from the set KX \ KY uniformly at random to [0, 1]. For this proof, let

g(K) = {g(k) : k 2 K}, SX./Y be the set of tuples {hk, xk, yki : k 2 KX./Y } with the

n smallest values g(k) 2 g(KX./Y), and n < |KX./Y |. Notice that, because g assigns

values uniformly and randomly, the set of tuples hxk, yki 2 SX./Y is a uniform random

sample of the set of tuples hxk, yki 2 TX./Y .

Now consider the size-n synopses LhKX ,Xi and LhKY ,Y i of tables TX and TY re-

spectively. Let LKX and LKY be the sets of keys from their respective synopses,

i.e., LKX = {kx : kx 2 LhKX ,Xi} and LKY = {ky : ky 2 LhKY ,Y i}. Moreover, let

LX./Y = {hk, xk, yki : k 2 LKX \ LKY }. Because a synopsis L always keeps the

numerical values associated with their respective keys, to prove that hxk, yki 2 LX./Y

is a uniform random sample of the set of tuples hxk, yki 2 TX./Y , it su�ces to show

that the set of keys {k : k 2 LX./Y } is a uniform random sample of KX./Y .

By de�nition, the set of keys LKX 2 LhKX ,Xi (resp. LKY 2 LhKY ,Y i) only contains

the n keys k 2 KX (resp. k 2 KY) with the smallest values of g(KX) (resp. g(KY)),

and the joined synopsis table LX./Y contains their intersection: LKX \ LKY . Thus, it is

easy to see that LKX \LKY ✓ {k : k 2 SX./Y } always holds. Without loss of generality,

assume that |LhKX ,Xi| = |LhKY ,Y i| = |SX./Y | = n. The best case happens when the

sets of keys are equal, i.e., LKX = LKY , in which case |LKX \ LKY | = |SX./Y | and

LKX \LKY = {k : k 2 SX./Y }. WhenLKX 6= LKY , then |LKX \LKY | < |SX./Y |. Now,

54
assume that |LKX \ LKY | = 1. Then, the single key k 2 LKX \ LKY has the smallest

value of g(k). The sample SX./Y of size 1 also contains the same key k 2 LKX \ LKY .

More generally, if |LKX \LKY | = m, then the set of keys of the sample SX./Y of sizem

is equal to the set LKX \LKY . Therefore, the set of tuples {hxk, yki : k 2 LKX \LKY }

induced by LX./Y is also a uniform random sample of TX./Y .

4.2.3 Discussion

From Theorem 1, we know that correlation sketches provide a valid estimate of

the correlation between any two data columns after a join – i.e., between XX./Y and

YX./Y . While this estimate is often accurate, it is based on a sub-sample of data and

inaccurate estimates are inevitable (see e.g., Figure 4.3). Of course, this will be true for

any randomized estimator, not just our algorithm.

The variance of CSK sketches’ estimates depends on the correlation estimator

used. In general, as we show in Section 4.4, correlation estimates converge to the true

correlation when the sketch join sample size (i.e., the number of rows in SX./Y) increases.

This sketch join size depends on multiple factors. First, there is a space-accuracy trade-

o�: as the number of minimum hash n increases, the probability of having larger join

sizes also increases. The sketch join size also depends on the distribution of the join keys.

Therefore, the hashing selection strategy used to include tuples in the sketch a�ects

the sketch intersection size, and ultimately it also a�ects the variance of correlation

estimation.

The �xed-size sample selection strategy adopted in CSK sketches is similar to the

hashing strategy in [16], i.e., the sketch contains the n minimum values of hu(k).

However, there is a wide range of possible hashing strategies with variable size [50, 166]

that may have di�erent accuracy-space trade-o�s and could be used to build other

55
types of correlation sketches. Exploring the e�ect of di�erent selection strategies on

join-correlation estimation is outside the scope of this chapter. However, in Chapter 5

we propose a di�erent hashing strategy that is more appropriate when the join key

contains repeated values.

Another bene�t of CSK sketches is that it retains all information contained in a

KMV sketch [5, 16]. Therefore, it allows not only estimating correlations between the

associated numerical columns but also enables estimating all statistics supported by the

family of minimum-value sketches (e.g., cardinality, Jaccard containment, and similarity).

These could be used, for example, to estimate the number of distinct elements in each

individual column (KX and KY), the containment of KX in KY , and the size of the

resulting join table TX./Y .

4.2.4 Implementation Details

We used the well-known 32-bits MurmurHash3 function to implement h, since it has

been shown to perform similarly to truly random hashing functions [47]. For hu, we used

Fibonacci hashing [101], a simple multiplicative hashing function (also known as the

golden ratio multiplicative hashing). To build the sketches, we implemented a tree-based

algorithm similar to the one described in [16]. In summary, the algorithm performs one

pass in the data while maintaining a tree that keeps the n tuples hh(k), hu(k), xki with

minimum hu(k) values. As we discuss in Section 4.4.3, we also implemented multiple

correlation estimators.

56
4.3 Ranking Correlated Columns

To query large dataset collections, we focus on a variation of join-correlation queries

that retrieve the top-k results, which we de�ne more formally as follows.

De�nition 3 (Top-k Join-Correlation Query). Given an integer k > 0 and query table

TQ (containing a column Q and a join column KQ), �nd the top-k tables TC in a dataset

collection such that TC is joinable with TQ on KQ and has the strongest (after-join)

correlations between the columns QQ./C and CQ./C from the joined table TQ./C .

Exact top-k join-correlation queries can be answered by �nding all tables TC that

are joinable on KQ, performing a full join to construct TQ./C , and �nally �nding the

tables that have the k greatest correlations. As we discussed, this is ine�cient and

does not scale when querying large dataset collections. Instead, we propose an e�cient

approach to compute approximate answers for these queries that use CSK sketches to

rank the results based on correlation estimates.

Answering approximate join-correlation queries is challenging due to the possibility

of errors. While searching for columns correlated with query column Q within a large

collection of disconnected tables, there will typically be many more poorly correlated

columns than highly correlated ones. In this “needle-in-a-haystack” setting, estimation

errors will lead to many false positive results: inevitably some poorly correlated columns

will look far more correlated with Q than they actually are, even more correlated than

the columns we aim to �nd. Therefore, simply ranking results based on the correlation

estimates may eventually produce poor rankings. In the remainder of this section, we

propose a framework for scoring columns that addresses this problem.

Another important aspect of the implementation of our method is query evalua-

tion. While CSK sketches e�ciently estimate join-correlations, a naïve approach that

57
computes correlations for all possible column pairs can still be expensive for large col-

lections. Computing correlations for all pairs, however, is not necessary: not all possible

join keys have a high key overlap to yield useful joins. To e�ciently answer top-k

join-correlation queries we can leverage e�cient data structures and query processing

algorithms for set overlap search. Recall that a sketch includes a set of pairs hh(k), xki.

Since h(k) is a discrete value, we can leverage existing data structures for e�cient

querying such as inverted indexes available in o�-the-shelf systems (e.g., PostgreSQL,

Apache Lucene) and e�cient query processing algorithms for set similarity search

such as JOSIE [177], ppjoin+ [165], CRSI [155], and Lazo [32]. In the remainder of this

chapter, we focus on the simple indexing method described above. In Chapter 6, we

analyze it in depth and develop an alternative e�cient indexing method. For more

details and theoretical analysis, we refer the reader to Section 6.2.

4.3.1 Ranking with Uncertain Estimates

To take into account the uncertainty associated with the estimations, we adopt a

simple risk-averse scoring framework that selects k results and maximizes:

max
kX

i=1

⇣
|r̂Q./Ci | ⇤

�
1� risk(Q,Ci)

�⌘
(4.1)

where |r̂Q./Ci | is the absolute value of the correlation estimate computed using a corre-

lation estimator applied to LQ./Ci , and risk(Q,Ci) is a function that returns a number

in the range [0, 1] and measures the dispersion of the correlation estimates using LQ./Ci ,

such as standard error or con�dence interval length. Intuitively, whenever the risk

associated with the estimation is non-zero, a penalty factor proportional to the risk is

58
applied to the estimate. Note that we consider the absolute of the correlation in Eq. 4.1,

given that negative correlations can be as useful as positive correlations.

4.3.2 Measuring the Estimation Error Risk

Anatural approach tomeasure the risk of estimation error is to use standard statistics

such as the standard error of the estimator or the length of the con�dence interval.

In our scenario, however, we do not have access to these: since we do not explicitly

join the columns (given that doing so is computationally prohibitive), we have little

information about the distributions of column values. For instance, it is not possible to

compute the exact variance (and similarly standard deviation or standard error) for the

correlation because it depends on the underlying correlation of the complete data and

fourth-order moments of the variables [170] (see Equation 2.4 for the variance under

normal distribution assumptions or see [24] for the general case). Moreover, estimating

high-order moments using small sample sizes may be unstable [20].

One statistic that we can compute is the standard error of the sampling distribution

of the Fisher’s Z correlation transformation [10], given by SEz = 1/
p
n� 3. While it

assumes a bivariate normal distribution, its computation is simple and only depends on

the known sample size n. Despite the normality assumption, this statistic is asymptoti-

cally equivalent to the error found in our theoretical analysis of 1/
p
n (Section 4.3.3).

Thus, we expect it to work increasingly well as the sample size increases for any data

distribution.

While we expect the Fisher’s Z standard error to be accurate for large sample sizes,

one drawback is that it assumes normality and does not take into account any infor-

mation about the data distribution. Given that real-world data is seldom normally

distributed [117] and the actual data distributions are usually unknown, we are inter-

59
ested in calculating distribution-independent con�dence interval bounds. In this setting,

non-parametric approaches such as bootstrapping are applicable. Bootstrapping only

makes use of the samples generated by our sketches and does not assume any prior

data distribution. While bootstrapping has been shown to have good performance for

estimating con�dence intervals for non-normal distributions [20], it has the disadvan-

tage of having a very high computational cost – specially in settings like ours where it

needs to be computed repeatedly over many columns.

To address the limitations of Fisher’s Z (normality assumption) and bootstrapping-

based (high computational cost) methods, in Section 4.3.3, we derive new con�dence

bounds using �nite-sample concentration bounds for sums of independent random

variables. These bounds only depend on the maximum and minimum values in XX./Y

and YX./Y . Since XX./Y ✓ X and YX./Y ✓ Y , the values in these columns lie strictly

within the range of values in X and Y . Thus, bounds on the range can be computed

with a single pass over the columns (i.e., at the same time we construct the CSK sketch).

Given that these bounds can be computed in constant time, there is essentially no

additional computational overhead.

4.3.3 Con�dence Interval Bounds

As discussed in Section 2.2, one challenge in deriving con�dence intervals is that

Pearson’s correlation is known to be highly sensitive to individual samples. This

prevents directly using e.g., a standard McDiarmid’s inequality to bound the accuracy

of an estimate for the correlation. Instead, we use individual Hoe�ding inequalities to

obtain con�dence intervals for each individual component of the correlation estimator,

and then apply a union bound to combine these results into an overall con�dence

60
interval. This is similar to the approach used for constructing con�dence intervals for

the sample variance for non-Gaussian data in [6].

Analysis. CSK sketches estimate the Pearson’s correlation between two columnsXX./Y

and YX./Y . Let Clow = min{x 2 X, y 2 Y } and Chigh = max{x 2 X, y 2 Y } be upper

and lower bounds in columnsX and Y , and letC = Chigh�Clow. LetA = XX./Y �Clow

and B = YX./Y � Clow. Since a constant shift does not a�ect Pearson’s correlation, we

note that the correlation between XX./Y and YX./Y is equal to:

⇢ =
hA� µA

~1, B � µB
~1i

kA� µA
~1k2kB � µB

~1k2
,

where µA = 1
N

P
N

i=1 Ai and µB = 1
N

P
N

i=1 Bi are the means of A and B and ~1 is the

all ones vector. This expression is equal to

⇢ =
⌫A,B � µAµBp

⌫A � µ2
A

p
⌫B � µ2

B

,

where ⌫A = 1
N

P
N

i=1 A
2
i
, ⌫B = 1

N

P
N

i=1 B
2
i
and ⌫A,B = 1

N
hA,Bi = 1

N

P
N

i=1 AiBi. Let

a, b 2 Rn be vectors containing n samples drawn uniformly without replacement from

A,B. According to Theorem 1, the estimate to Pearson’s correlation obtained via our

sketches is equivalent to:

r =
⌫a,b � µaµbp

⌫a � µ2
a

p
⌫b � µ2

b

,

where:

µa =
1

n

nX

i=1

ai, µb =
1

n

nX

i=1

bi,

⌫a =
1

n

nX

i=1

a2
i
, ⌫b =

1

n

nX

i=1

b2
i
,

61

⌫a,b =
1

n

nX

i=1

aibi.

Union Bound. We want to compute a con�dence interval for ⇢, meaning that, for some

speci�ed ↵ (e.g., ↵ = .05), our goal is to compute upper and lower bounds ⇢low, ⇢high

depending on our estimate r such that: Pr[⇢low  ⇢  ⇢high] � (1�↵). To do so, we �rst

compute the upper and lower bounds for µA, µB , ⌫A, ⌫B , ⌫A,B , for all of the 5 parameters

r depends on. For any parameter c, we want: Pr[clow  c  chigh] � (1 � ↵/5). For

example, that Pr[µlow

A
 µA  µhigh

A
] � (1� ↵/5). We will discuss how to obtain these

bounds shortly, but for now, we show how they can be used to compute a con�dence

interval. First let:

numlow = ⌫ low
A,B

� µhigh

A
µhigh

B

numhigh = ⌫high
A,B

� µlow

A
µlow

B

denlow =

r
max

h
0, ⌫ low

A
� (µhigh

A
)2
i
·max

h
0, ⌫ low

B
� (µhigh

B
)2
i

denhigh =

r
max

h
0, ⌫high

A
� (µlow

A
)2
i
·max

h
0, ⌫high

B
� (µlow

B
)2
i

Then set:

⇢low =

8
>><

>>:

numlow
denhigh

if numlow � 0

numlow
denlow

if numlow < 0

(4.2)

⇢high =

8
>><

>>:

numhigh

denlow
if numhigh � 0

numhigh

denhigh
if numhigh < 0.

(4.3)

62
By a union bound, we have Pr[⇢low  ⇢  ⇢high] � (1� ↵).

Individual Parameter Bounds. The next step is to obtain the con�dence intervals

for each of the parameters {µA, µB, ⌫A, ⌫B, ⌫A,B}, which we do using Hoe�ding’s

concentration inequality for bounded random variables. This bound is usually stated for

sampling with replacement (i.e., independent random sampling), but Hoe�ding proves

in his original paper that it also holds for without replacement sampling, which only

gives better concentration. Speci�cally Theorems 2 and 4 in [88] give:

Lemma 1 (Hoe�ding’s Inequality). Let X1, . . . , XN be a set numbers bounded 2 [0, C]

with mean µX = 1
N

P
N

i=1 Xi. Let Y1, . . . , Yn be drawn independently without replacement

from this set. Then:

Pr

"�����µX � 1

n

nX

i=1

Yi

����� � t

#
 2e�2nt2/C2

.

Since A and B have values in [0, C] by de�nition, each of the terms {µA, µB, ⌫A,

⌫B, ⌫A,B} is the average ofN numbers, bounded between [0, C] for µA, µB and between

[0, C2] for the others. Accordingly, we can apply Hoe�ding’s inequality to obtain a

con�dence interval with ↵/5, as required by our analysis above. For example, consider

µA. We have from Hoe�ding’s that:

Pr[|µA � µa| � t]  2e�2nt2/C2
.

For 2e�2nt2/C2
= ↵/5, we solve for t =

p
ln(10/↵) · C2/2n and can then set µlow

A
=

µa � t and µhigh

A
= µa + t. As another example, consider ⌫A. From Hoe�ding’s,

Pr[|⌫A � ⌫a| � t]  2e�2nt2/C4
.

63
For 2e�2nt2/C4

= ↵/5, we solve for t0 =
p
ln(10/↵) · C4/2n and can then set ⌫ low

A
=

⌫a � t0 and ⌫high
A

= ⌫a + t0. The �nal bounds for all �ve parameters are as follows:

[µlow

A
, µhigh

A
] = [µa � t, µa + t], [µlow

B
, µhigh

B
] = [µb � t, µb + t]

[⌫ low
A

, ⌫high
A

] = [⌫a � t0, ⌫a + t0], [⌫ low
B

, ⌫high
B

] = [⌫b � t0, ⌫b + t0]

[⌫ low
A,B

, ⌫high
A,B

] = [⌫a,b � t0, ⌫a,b + t0]

where t =
p

ln(10/↵) · C2/2n and t0 =
p

ln(10/↵) · C4/2n.

Discussion. The above analysis gives a simple procedure to compute a valid con�dence

interval for correlation estimates: we �rst compute t, t0 as de�ned above, which only

requires the desired con�dence level ↵, C which is pre-computed, and the sample size n

(i.e., the number of rows in SX./Y . Then, we compute upper and lower bounds for each

parameter, and plug into Equations (4.2) and (4.3) to obtain a �nal con�dence interval.

Our analysis shows that for a �xed 1� ↵ con�dence level, the con�dence interval

bounds depend on the sample size and up to the fourth power of the range C of the

variables A and B. This is in line with previous �ndings which point out that the

deviation of the Pearson’s sample estimator depends on the fourth moment of the

variables [170, 171]. The accuracy of the bound also scales inversely with the square

root of the sample size n, as expected.

Correlation is di�cult to estimate whenever the population variance is low, because

the estimator can become unstable (as these terms appear in the denominator of the

equation for r). In particular, if either kA� µA
~1k2 or kB � µB

~1k2 is close to zero, then

any small deviation of ka�µa
~1k2 or kb�µb

~1k2 from the true values that we are trying

to estimate would lead to a large di�erence in ⇢ vs. r.

64
So, to get a better sense of the bounds, let us assume that, for both A and B,

var(A) = ⌫A � µ2
A
and var(B) = ⌫B � µ2

B
are � c for some constant c. From the

analysis above, it is relatively easy to show that if we set n = O
⇣

C
4 ln(1/↵)
✏2c2

⌘
, we will

obtain a �nal con�dence interval with width 2✏ – i.e., we can estimate the Pearson’s

correlation to accuracy ±✏. For data bounded by C , it would be natural for the variance

c to be on the order of C2, in which case, the number of samples required is just

n = O
⇣

ln(1/↵)
✏2

⌘
. In other words, as the sample size n grows (i.e., as our sketches size

increases) our estimate converges with error roughly 1p
n
.

E�ect of Small Sample Sizes. Note that when sample sizes are small, the bounds for

the standard deviation terms (⌫ � µ2) may become negative, which makes denhigh and

denlow to become zero and thus yield invalid bounds. To address this problem, while

computing ⇢low and ⇢high, we can replace the denominator of the Equations 4.2 and 4.3 by

the product of the sample standard deviation of the variables computed using the samples

induced by the sketch join, i.e., we can set denhigh = denlow =
p
⌫a � µ2

a

p
⌫b � µ2

b
.

We refer to these modi�ed upper bound and lower bound, respectively, as ⇢high
HFD

and

⇢low
HFD

. Although these are not true probabilistic bounds, their resulting con�dence

interval length (⇢high
HFD

� ⇢low
HFD

) still provides meaningful information to measure the

estimation error risk. This is because the denominator term serves as a normalization

factor of the covariance term in the numerator (for which we still compute the true

bounds).

4.3.4 Scoring Functions

Based on the framework (Section 4.3.1) and statistics (Sections 4.3.2 and 4.3.3)

described above, we �nally derive four di�erent scoring functions that optimize ranking

for correlated column discovery. Let cilength = ⇢high
HFD

�⇢low
HFD

be the con�dence interval

65
length of a correlation estimate. Then, set cihigh

max
and cihigh

min
to be the maximum and

the minimum con�dence interval length in a ranked list, respectively. We de�ne the

following risk penalization factors:

sez = 1� 1p
max(4, n)� 3

cib = 1�
⇢high
PM1 � ⇢low

PM1

2

cih = 1�
cilength � cihigh

min

cihighmax � cihigh
min

Recall from our framework that each of these factors assume values in the range [0, 1]

and when they are equal to 1, the error risk is the minimum possible. The equations

above are direct applications of the statistics introduced in Sections 4.3.2-4.3.3, i.e.,

Fisher’s Z transformation standard error, Bootstrap CI, and our Hoe�ding’s CI. By

plugging them into Equation 4.1, we have (in addition, we also consider a no-penalization

factor in s1):

s1 = rp, s2 = rp ⇤ sez,

s3 = rb ⇤ cib, s4 = rp ⇤ cih,

where rp and rb are the absolute of the correlation estimated using, respectively, the

Pearson’s sample estimator and the PM1 bootstrap estimator [161]. We also use PM1

for the con�dence intervals in cib.

4.4 Experimental Evaluation

We performed extensive experiments using both synthetic and real-world datasets

to evaluate the e�ectiveness of CSK sketches and the proposed ranking strategies.

66
4.4.1 Datasets

We used three di�erent data collections: Synthetic Bivariate Normal, which is syn-

thetically generated and follows a pre-de�ned, well-known data distribution; the World

Bank’s Finance [164] and the NYC Open Data [121] collections, which contain real-world

datasets, currently published in open data portals. We used snapshots of these reposi-

tories collected in September 2019 using Socrata’s REST API [147]. All datasets were

stored in plain CSV text �les, and we used the Tablesaw library [150] to automatically

parse and detect the basic data types for each column.

World Bank Finances (WBF). This collection contains 64 datasets (tables) related to

the World Bank’s Finances [164]. There is missing data in several columns and some

columns contain large monetary values. From each table, we extracted all possible pairs

of categorical and numerical data columns hKX , Xi, out of which we generated all

possible unique 2-combinations of columns pairs – 9,979,278 pairs of column pairs, i.e.,

hKX , Xi, hKY , Y i.

NYC Open Data (NYC). The tables from this dataset contain data published by New

York City agencies and their partners [121]. Our snapshot includes 1,505 di�erent

datasets. Using the same process described above for theWorld Bank Finances collection,

we generated 12, 497, 500 pairs of column key-value pairs.

Synthetic Bivariate Normal (SBN). This dataset was generated by creating t tables

consisting of n tuples hk, xk, yki, where k 2 K is a random unique string, and xk 2 X

and yk 2 Y are real numbers drawn from a bivariate normal distribution with mean

µ = 0. The covariance of the column vectors X and Y was chosen in such a way

that the Pearson’s correlation coe�cient between X and Y was approximately equal

to a given parameter rXY . We then created t pairs of tables TX = hKX , Xi and

67
TY = hKY , Y i. Finally, we reduced the size of the table TY from n to n0 by selecting a

uniform random sample of size n0 = n⇤ c, where c is a random real number in the range

(0, 1) indicating the join probability betweenX and Y . We set the number of table pairs

t = 3000. For each table pair, we set n to be a random number drawn uniformly in the

range (0, 500000), and the correlation rXY is drawn uniformly at random from (�1, 1).

4.4.2 Correlation Estimation Accuracy

To study the e�ectiveness of our sketching method, we compare the estimated

correlations against the actual correlations. For each pair of columns, hKX , Xi and

hKY , Y i, we �rst build their correlation sketches SX and SY , and then compute their

correlation estimates r̂hX./Y i. Then, we compare the estimates with the actual column

correlations rX./Y computed using the (complete) join of columns XX./Y and YX./Y .

Here, we only show the results for Pearson’s correlation. We discuss the performance

of other estimators in Section 4.4.3.

Figure 4.3 shows scatterplots for the estimates computed for all three datasets against

the actual Pearson’s correlation values, using sketches of size 256. We can clearly see

that CSK sketches produce quite accurate results for the SBN dataset (Figure 4.3a),

which contains only data drawn from a bivariate normal distribution: the estimates are

concentrated close to their actual correlation values with only a few points deviating

from the actual correlation values.

For the NYC (Figure 4.3b) and WBF (Figure 4.3c) datasets, which contain real-world

data from unknown distributions, as expected, there are more incorrect predictions. We

can observe that for many points with actual correlation equal to 0, the correlation is

overestimated – see the vertical line around the value zero in the x-axis. This happens

because some of the joins computed from the sketches can be too small, leading to this

68
inaccuracy. Note that Figures 4.3a, 4.3b, and 4.3c re�ect estimates computed with joins

(sketch intersection) that contain as few as 3 tuples (n � 3). Nonetheless, we can still

observe a large concentration of points around the diagonal line, suggesting that CSK

sketches are e�ective.

To better understand the behavior of the sketches with respect to sample size, we

also plot in Figure 4.3d the results for the NYC data showing only join samples with

size at least 20. The plot shows that indeed, for larger sample sizes, the behavior is

more similar to that of the SBN dataset – the points are more concentrated closer to the

diagonal, indicating the estimates are more accurate.

This provides evidence for the issue we discussed in Section 4.3: in large table

collections, there are often many more poorly-correlated tables than well-correlated

ones, and estimation errors may lead to a potentially large number of false positives.

This underscores the importance of having e�ective ranking functions to help users

focus their attention on tables that are more likely to be correlated. In this case, for

example, a ranking function that prioritizes estimates computed from larger join samples

is likely to be e�ective at pruning these false positive results.

4.4.3 Exploring Di�erent Correlation Estimators

We studied the performance of di�erent correlation estimators:

(1) Pearson’s Sample Correlation: Computes the correlation using the formula

de�ned in Equation 2.3.

(2) Spearman’s Rank Correlation: Let r(x) = rx where rx = 1 for the smallest x,

rx = 2 for the second smallest x, and so on. The numeric column values are transformed

using r(x) and then the Pearson’s correlation over the transformed values is computed.

69

(a) SBN dataset, n � 3. (b) WBF dataset, n � 3.

(c) NYC dataset, n � 3 (d) NYC dataset, n � 20

Figure 4.3: Estimation errors signi�cantly vary for di�erent sample sizes and di�erent
datasets with di�erent data distributions. (a), (b), and (c) show the deviations of all
column pairs for 3 di�erent datasets. (d) shows the estimates from (c) after �ltering out
estimates that use fewer than 20 samples.

(3) Rank-based Inverse Normal (RIN): Similarly to Spearman’s, a transformation

function is applied before computing the Pearson’s correlation. Following [18], we

employ the rankit function [21] which is de�ned as: h(x) = ��1
⇣

r(x)�1/2
n

⌘
, where �

is the inverse normal cumulative distribution function.

70
(4) Qn correlation: Computes the correlation using as modi�ed formula of Pearson’s

correlation and the robust Qn scale estimator. For more details, see [144].

(5) PM1 Bootstrap: Performs repeated re-sampling with replacement of the data

and recomputes the correlation using the Pearson’s sample correlation estimator. The

average of all re-samples is then used as an estimate. Instead of drawing a �xed large

number of re-samples (say 10.000), we stop the re-sampling when the probability of

changing the mean by more than 0.01 falls below 0.05%.

Most computed correlation estimates using sketches were compared to their corre-

sponding population correlations (i.e., including the transformations of the population

data when applicable). The only exception was the PM1 Bootstrap estimator, which is

compared to the population’s Pearson’s correlation that it intends to estimate.

Correlation estimators di�er in their sample size requirements and sensitivity to the

data distribution [23]. To better understand how the correlation estimation accuracy

changes when we vary the estimator and the amount of storage space used by the

sketch (determined by the maximum sketch size), we plot the root mean squared error

(RMSE) for di�erent choices of correlation estimators and maximum sketch sizes in

Figure 4.4. We can see a trend: for all estimators and maximum sketch sizes, the RMSE

decreases as the intersection size between the sketches increases. The RMSE stabilizes

roughly at 0.1. While the di�erent estimators display similar trends, the plot also shows

that some estimators are less robust (see e.g., the spikes in the line for Qn).

4.4.4 Correlated Column Ranking

To better understand the e�ectiveness of the proposed scoring functions, we use

the NYC data collection which contains the largest number of tables. For each pair of

columns hKX , Xi in the collection, we retrieved all other joinable columns hKY , Y i.

71

Figure 4.4: The sample size (sketch intersection) has an impact on RMSE. As the
sketch intersection size increases, the RMSE decreases in the NYC dataset. Here, the k
parameter (row) denotes the maximum sketch size (number of minimum values kept in
the sketch).

Then, we ranked the list of retrieved columns using the scoring functions described

in Section 4.3. As baselines we use: 1) a random scoring function, which assigns

random scores in the range [0, 1] drawn from a uniform distribution; 2) the exact Jaccard

Containment (jc) similarity computed using the complete data after the join; and 3) the

JC similarity estimated (ĵc) using our correlation sketches. Even though these baselines

do not take correlation into account, we use them as a point of comparison, since they

represent existing methods for retrieving joinable tables.

We use two well-known measures to compare the scoring functions: mean average

precision (MAP) and normalized discounted cumulative gain (nDCG) [97]. nDCG

supports graded relevance judgments, i.e., each retrieved column can receive di�erent

scores depending on their relevance (the absolute value of the correlation, in our case)

72
and position on the list. In contrast, MAP supports binary judgment, and relies on

thresholds to decide which columns are relevant (say, r > .5).

To evaluate di�erent aspects of the ranking, we compute MAP for the whole ranked

list using di�erent thresholds for correlation relevance: r > 0.50 and r > 0.75. For

nDCG, which has a tendency to assign higher scores, we compute the metrics only over

the top-k search results, where k = 5 and k = 10. Table 4.1 summarizes the results.

The �rst trend we observe is that the ranking produced using the JC similarity scores

attains scores similar to random ordering. This con�rms our hypothesis that JC is not

well suited for ranking the results of join-correlation queries and also suggests that

highly correlated columns can have di�erent levels of JC similarity.

Note that all correlation-based ranking functions (Section 4.3.4) show signi�cant

improvements over the baselines. The ranking functions based on our Hoe�ding bounds

(rp ⇤ cih) attain scores that are either better or very close to the bootstrap-based ranking

function. This is especially interesting due to the fact that the Hoe�ding-based CI

can be computed in constant time, in contrast to the bootstrap method that requires

many re-samples and the computation of correlations for these samples (typically,

around between 1,000 and 10,000 iterations are used [20, 19]). In other words, we derive

rankings that are comparable to those produced by the bootstrapping at a fraction of the

cost. Moreover, the MAP scores suggest that the Hoe�ding-based scoring is particularly

e�ective at avoiding false positives with correlation above r > 0.75.

Note that Table 4.1 shows only average scores over all queries. To get a better sense

of the improvements over all queries, we plot the distribution of evaluation scores in

Figure 4.5. The histograms show the number of queries for di�erent metric score values.

Rows display the scoring functions: JC similarity (�rst row) and the Hoe�ding-based

scoring (second row). We can clearly see that, for all metrics, the score distributions

73
shift from left (bad scores) to right (good scores), indicating improvements in the whole

metric range. It is also clear that, especially when considering the nDCG metric, most

queries have very good scores (i.e., close to the optimal).

ranker score %

rp ⇤ cih 0.529 193.2%
rb ⇤ cib 0.516 185.9%
rp 0.507 180.9%
rp ⇤ sez 0.420 133.1%
jc 0.180 0.0%
ĵc 0.172 -4.8%
random 0.161 -10.8%

(a) MAP (r > .75)

ranker score %

rp ⇤ sez 0.472 102.1%
rp ⇤ cih 0.467 99.8%
rp 0.452 93.2%
rb ⇤ cib 0.428 83.2%
ĵc 0.239 2.3%
jc 0.234 0.0%
random 0.202 -13.7%

(b) MAP (r > .50)

ranker score %

rb ⇤ cib 0.714 51.5%
rp ⇤ cih 0.705 49.5%
rp 0.699 48.4%
rp ⇤ sez 0.689 46.2%
random 0.481 2.1%
ĵc 0.480 1.8%
jc 0.471 0.0%

(c) nDCG@5

ranker score %

rb ⇤ cib 0.845 17.7%
rp 0.843 17.5%
rp ⇤ cih 0.841 17.3%
rp ⇤ sez 0.832 15.9%
ĵc 0.726 1.2%
random 0.724 0.9%
jc 0.717 0.0%

(d) nDCG@10

Table 4.1: Ranking evaluation scores in terms of MAP and nDCG. The “%” column
denotes relative improvement over jc.

4.4.5 Runtime Performance

Join-Correlation Estimation. To assess the e�ciency of our approach and suitability

for use in dataset search engines, we compare the running times of joins and correlation

estimation computations using the sketches against the times required to execute the

same computation over the full data. Since CSK sketches creates �xed-sized sketches

for arbitrarily sized datasets, it is natural to expect a big performance impact due to

74

Figure 4.5: Distribution of the evaluation metric scores for di�erent scoring functions.
x-axis shows slices of the metric range [0, 1]. Each bar corresponds to a slice of width
0.1. The y-axis shows the number of queries that fall in each slice.

the reduction in the complexity of the problem – from potentially large table sizes to

a small constant factor (sketch size). The results are summarized in Table 4.2, which

include the times for joins and correlation computations using Pearson’s and Spearman’s

coe�cients. The results con�rm that, with sketches, queries can be evaluated orders of

magnitude faster than by using the full data, and given that the sketch size is �xed, their

running time is more predictable. Note that, for this comparison, we assume the data is

loaded in memory. However, for large datasets, the costs associated with using the full

data would be even higher due to the cost of reading data from disk or transferring it

over a network.

Query Evaluation. We also assessed the performance of evaluating join-correlation

queries. For this experiment, we extracted all column pairs hKX , Xi from all 1,505

tables in the NYC dataset and randomly split them into two distinct sets, which we

denote as query set and corpus set. Next, we set the maximum sketch size to 1024

and built an inverted index for all tables of the corpus set using a standard indexing

library [2]. Finally, we used all pairs from the query set to issue queries against the

index and measured the query execution time. We observed that the running times for

75
Full data Sketch

percentiles join rs rp join rp rs

mean 42.219 8.494 0.240 0.026 0.000 0.004
std. dev. 367.696 134.357 9.314 5.618 0.042 0.279
75% 0.231 0.141 0.005 0.003 0.000 0.002
90% 7.038 0.154 0.011 0.006 0.001 0.004
99% 1360.605 29.583 0.385 0.012 0.003 0.013
99.9% 4021.838 2731.154 51.278 0.021 0.007 0.033

Table 4.2: Running times (in milliseconds) for computing joins and correlations using
full data and sketches. Using the full data, queries can take orders of magnitude more
time than when using the sketches. rs denotes the Spearman’s estimator and rp denotes
Pearson’s estimator.

94% of queries are under 100 ms and approximately 98.5% of queries take under 200 ms.

These times include retrieving the top 100 columns by key overlap, reading sketches

from the index, and re-sorting all columns by estimated correlation. These preliminary

results are promising and suggest that our approach can provide interactive response

times for join-correlation queries over large data collections. In Chapter 6 we provide a

more detailed performance evaluation of this and other methods.

76

Chapter 5

Tuple-based Sketches & Mutual

Information Estimation

In Chapter 4, we introduced the idea of correlation sketches and a new method to

build them, which we referred to as CSK. Unfortunately, these sketches have limitations.

Notably, they do not properly handle repeated values on join keys (that are common in

real data), which may cause estimation issues when performing left joins (especially on

skewed distributions). Moreover, the implementation and experiments in Chapter 4 only

considered traditional correlation measures, which may fail to identify non-monotonic

relationships and are only applicable to numerical attributes.

Chapter Contributions. In this chapter, we de�ne the problem of MI estimation

over joins for data augmentation and identify challenges that arise when estimating

it over left joins with non-unique join keys. We propose TUPSK, a new method for

building correlation sketches that has a single parameter (the maximum sketch size),

and addresses MI estimation challenges while avoiding the full join computation, thus

providing e�cient support of MI-based data discovery. Unlike previous approaches,

77
our sketching method does not assume that join keys are unique and it guarantees a

�xed-size sketch while keeping an unbiased uniform sample of the join. Due to the

latter property, our sketches can be used with any existing sample-based MI estimator.

We assess the e�ectiveness of our sketching method and di�erent MI estimators

through an extensive experimental evaluation. To do so, we design a synthetic bench-

mark that allows us to compare the estimated MI with the true MI obtained analytically

from the data distributions used to generate the data. This benchmark allows us to

observe the impact of dependence between the join-key attributes and the feature

attributes on the MI estimates computed using the sketches. Furthermore, it allows

identifying di�erences in the behavior of various combinations of sketches and MI

estimators, and when and why they fail. We also evaluate our sketches using real-world

data from open-data repositories. Our results con�rm that the proposed sketch enables

e�cient approximation of the MI computed on the full join. Our experimental �ndings

have uncovered useful observations that help guide the implementation and deployment

of MI-based sketches for data augmentation.

5.1 MI Estimation over Joins with Repeated Keys

We are interested in estimating mutual information in the relational data augmen-

tation setting: augment a given base table with new attributes from an external table

through a join operation. Since these new attributes may be used as additional features

to train a machine learning model to predict a target variable, we need to keep the

number of rows in the original base table intact by performing a left-outer join.

78
5.1.1 Problem Statement

Let Ttrain denote the base table containing (1) a target variable Y that we want to

predict or explain, and (2) an attributeKY (or set of attributes) that can be used as a join

key in a relational equi-join operation. Let Taug be an external table that contains (1)

an attribute X (or a set of attributes) that can be used as a feature; and (2) an attribute

KX that can be used to join Taug with the base table Ttrain on the attribute KY . This

is formally de�ned below. For exposition, we assume the case where KX ,KY and X

are all single attributes, and we discard any rows with NULL values resulting from Taug

not containing some key k in KX that is present in KY . 1

De�nition 4 (MI Estimation over Joins). Given two tables Ttrain and Taug, the goal

is to estimate the mutual information between the attributes X and Y from the table

constructed through a left-outer-join of the two tables, Ttrain ./ Taug , on keysKX andKY ,

without having to compute the join.

Consider the example in Figure 1.1. Here, Ttrain = Ttaxi is a table containing

the number of daily taxi trips in New York City (NYC). The attribute Y represents

the number of taxi trips NumTrips that happened in a particular ZIP Code with

KX = KY = ZipCode. We are interested in enriching Ttrain with new features that

may help predict the taxi demand (number of trips) on a given day. Taug = Tdemographics

represents another table discovered in a di�erent source. To determine if Taug may be

useful for our predictive task, we want to estimate the mutual information between the

columns X and Y (e.g., Borough and NumTrips), obtained after the join between

Ttrain and Taug, without computing the full join.
1While we limit joins to having high containment, our method does not prevent using existing

strategies for handling NULLs in MI estimation [63, 93]. Evaluating these approaches is beyond the scope
of this dissertation.

79
5.1.2 Joining Arbitrary Tables

Many-to-Many Joins. Our problem de�nition assumes that there is a many-to-one

relationship between Ttrain and Taug, that is, each tuple from Ttrain joins with at most

one tuple from Taug . This is required by applications such as model improvement, where

the number of rows in the original training set must remain intact to avoid introducing

bias. Furthermore, if new rows are added during the join, it is not clear which labels

should be assigned to these rows. However, while searching for augmentations, we

can �nd candidate tables Tcand that have a many-to-many relationship with Ttrain. For

example, when joining taxi trips Ttaxi and weather Tweather on Date, since temperature

Temp values are recorded at hourly intervals, there are multiple temperature readings

associated with each Date.

In such cases, since the augmentation will lead to duplicate key values, we trans-

form the candidates to ensure that the augmented table will have the same number

of rows as Ttrain. To do so, we de�ne a featurization function AGG that derives the

augmentation table Taug from a candidate table Tcand. Given a candidate table Tcand with

key columnKZ and value column Z , and a featurization function AGG, the following

join-aggregation query maps Tcand[KZ , Z] ! Taug[KX , X], generating an intermediate

aggregate table Taug which is then combined with Ttrain. This can be expressed using

the following SQL query:

SELECT Ttrain[KY], Ttrain[Y], Taug[X]

FROM Ttrain

LEFT JOIN (

SELECT KZ AS KX, AGG(Z) AS X from Tcand

GROUP BY KZ

80
) AS Taug

ON Ttrain[KY] = Taug[KX];

Note that while the aggregation of Tcand can be performed separately as a preprocessing

step, the materialization of Taug is not required for MI estimation. As we will discuss in

Section 5.2, sketches can be constructed directly from Tcand, which avoids the cost of

aggregating join keys that are not needed for estimating the MI.

Figure 1.1 illustrates an example where the attribute Z = Temp in Tcand = Tweather

is transformed (i.e., the values associated with a given date averaged) and joined on

Date with Ttrain = Ttaxi, as shown in the resulting table in Figure 1.1(d). Note that the

numbers of rows in the tables Ttrain and Tcand need not be equal and their join attributes

may have repeated values that need to be mapped to a feature value. We give a more

concrete example below.

Example 3. Let KY and KZ be the keys for the tables Ttrain and Tcand, respec-

tively. Let Ttrain[KY] = [a, a, b, c] and Tcand[KZ] = [a, b, b, b, c, c, c] and Tcand[Z] =

[1, 2, 2, 5, 0, 3, 3], respectively. The �rst step is to group values based on the key values,

i.e., {a ! [1], b ! [2, 2, 5], c ! [0, 3, 3]}. Next, the aggregate function AVG generates

an intermediate aggregate table Taug with the mappings [a ! 1, b ! 3, c ! 2]. Joining

Taug with the training table Ttrain generates the columnX = [1, 1, 3, 2]. Similarly, if we

applied MODE (to return the most frequent value), the output would be X = [1, 1, 2, 3],

and COUNT would generate X = [1, 1, 3, 3].

From the example above, we can draw a few observations about featurization and

its implications for MI estimation.

Data Distribution. The distribution of the feature Ttrain[X] depends on the function

AGG and the join key Ttrain[KY]. For instance, distribution parameters such as the

mean of X will likely be di�erent for functions such as AVG and MAX. Note also that

81
repeated values inKY lead to repeated values inX , e.g., the value 1 is repeated twice in

X because a repeats twice inKY . Finally, note that Ttrain[X] may be even independent

of Tcand[Z] when using a function such as COUNT, in which case it only depends on

the key frequency distribution of KY (assuming no NULL values exist in Y).

Choice of Aggregation Function. There are many choices for aggregate functions and

some may be more appropriate for speci�c data types, e.g., AVG for ordered-continuous

data versusMODE for unordered-discrete data. Furthermore, the data type of the function

output depends on the aggregation function and the input data type (e.g., while COUNT

always outputs a discrete number regardless of input type, MODE outputs the same type

as the input data. Note also that the aggregation function is not limited to outputting

scalar values. It could also return multidimensional vectors (such as embeddings of

text values), in which case, any MI estimator that supports multidimensional variables

such as KSG [102] and its derivatives could be used (see Section 2.3). In practice, to

support general datasets and information needs, it may be necessary to create multiple

augmentation columns using di�erent aggregation functions and then examine the

results.

5.2 Sketches for Joins on Repeated Keys

The task of estimating quantities over join results without materializing the join is a

long-standing problem in the literature [1, 92]. One way to do so is to use sampling. A

naïve approach to obtain samples of an equi-join is to join rows sampled independently

from the two tables via Bernoulli sampling. Unfortunately, this results in a quadratically

smaller join size [1] which results in poor accuracy.

82
To address this issue, we use coordinated sampling [92, 156, 38, 13, 16, 136, 137, 42, 43].

In this approach, a shared-seed random hashing function is applied to the join keys,

and a small set of tuples with the minimum hash values is selected to be included in the

sketch [92, 13]. This implies that if a row with join key k is chosen from table Ttrain,

then a corresponding row with the same key k in Taug is more likely to be sampled.

Hence, we essentially forgo sample independence for an increased join size. However,

this may lead to samples that are not identically distributed, which increases estimator

bias. While there exist weighting schemes such as Horvitz-Thompson for correcting this

bias [48, 70], these estimators are tightly coupled with the measures being estimated

and, thus, are not directly applicable to estimating MI (see Section 2.3). We, therefore,

focus on sampling schemes that allow us to use existing MI estimators.

Another challenge is how to deal with repeated values in the join key. Coordinated

sampling, which chooses samples based on hash values of join keys, typically assumes

that the keys are unique or, if not, can be aggregated [136, 13, 156]. As discussed

in Section 5.1, this does not hold in the relational data augmentation setting since

the number of rows must be kept intact. To address this issue, some join sampling

algorithms suggest an all-or-nothing approach that includes all entries associated with

a selected join key [156]. However, this is known to increase the variance of estimators

and results in unbounded size [38]. Recent approaches introduce multiple sampling-rate

parameters to select a fraction of the repeated entries [38, 92]. While this improves

variance, these parameters are hard to set in practice and the resulting size is sensitive

to table size and the join key distribution.

We propose new sampling-based sketches for estimating MI over joins that address

these challenges. We start by proposing an extension of existing two-level sampling

schemes [92, 38] that takes only a single parameter as input and provides a hard bound

83
on sketch size (Section 5.2.1). We refer to this baseline approach as LV2SK. We provide

an analysis that shows that LV2SK leads to non-uniform sampling (hence, not identically

distributed) that can increase the bias of MI estimators; this is con�rmed experimentally

in Section 5.3.2.3. To address this issue, we propose TUPSK (Section 5.2.2), a novel

tuple-based sampling scheme that leads to uniform sampling probabilities, which better

matches assumptions made by the MI estimators. As shown in Section 5.3.2.3, this

reduces bias and leads to higher accuracy of MI approximation.

Approach Overview. We assume access to hash function hu that maps input uniformly

to the unit range [0, 1]. We also assume that inputs to hu are integers. Otherwise, we

transform the input to integers using a collision-free hash function h that maps objects

to integers before feeding them to hu, i.e., hu(h(x))where x is the input data. In practice,

it su�ces to use pseudorandom functions. To implement h, we used the well-known

32-bit MurmurHash3 function. For hu, we used Fibonacci hashing [101].

Our approach works as follows. Given tables TX and TY with schemas [KX , X]

and [KY , Y] respectively, we �rst build small sketches SX and SY . The sketch SX

is composed of a set of tuples hh(k), xki where h(k) is the hash of a join key value

k 2 KX and xk is a value from X ; the sketch SY is built analogously to SX . Sketches

are typically built in an o�ine preprocessing stage. When it is time to estimate MI

between attributes in two di�erent tables, we merge their sketches to recover a useful

sample of the join for estimating the mutual information. Speci�cally, given a pair of

sketches SX and SY , we create a sketch Sjoin by performing a join between the sketches

on their hashed keys h(k), resulting in tuples hh(k), xk, yki. These tuples are a subset

of the full table join Tjoin. Finally, we apply a function F that uses the sample of paired

values hxk, yki in Sjoin to estimate the MI of X and Y , i.e., Î = F(Sjoin). The function

F uses existing MI estimators such as the ones described in Section 2.3.

84
Our sketching algorithms only di�er in the strategy they use to select samples that

are included in the sketch. As inputs, they are given tables Ttrain (left table) and Tcand

(right table). Speci�cally, when sketching Ttrain, it must sample values associated with

repeated key values, whereas, for Tcand, it must aggregate repeated values in order to

create a sketch that represents Taug . In what follows, we provide a detailed description

of these methods.

5.2.1 Baseline: Two-Level Sampling (LV2SK)

Our �rst sketching method works as follows. In the �rst level, it performs coordi-

nated sampling based on (distinct) join keys to select the same set of keys from both

tables, thus maximizing the expected join size between TX and TY . However, given

that this does not provide a bound on the sketch size, it performs a second sampling

step to cap the number of samples per key, limiting the �nal sketch size.

Building LV2SK Sketches. We choose the set of tuples hh(k), xki as follows. At the

�rst sampling level, we select the n keys that have the minimum values of hu(k). For

each of these n keys, we �lter a subset of the tuples having key k using independent

Bernoulli sampling. The number of tuples to be included in the sketch is chosen in

proportion to the frequency of k in the original table T, as follows:

1. For Tcand, we apply aggregate function AGG to the set of values {xk} associated with

each key k to generate a single value AGG({xk}).

2. For Ttrain, we keep nk = max(1, bnpkc) samples per key, where pk = Nk/N is the

probability of the key k in KX .

The sampling strategy above guarantees that (1) the sketch contains at least one sample

for each of the n chosen keys, and (2) for the chosen keys, the frequency of the key in

85
the sketch is proportional to the frequency of the key in Ttrain. We can build the sketch

described above after sorting Ttrain. Alternatively, it can be done in a single pass using

reservoir sampling: we only need to maintain a reservoir with n samples for each of

the n minimum keys and the number of repeated entries associated with each of the

minimum keys, which is needed to determine the desired number samples nk for each

join key [158]. At the end of this pass, we keep only the �rst nk samples of the reservoir

of each key k and discard the remaining entries.

Sketch Size. The size of LV2SK sketches is upper bounded by 2n, but it is typically

close to n; To see this, note that the sketch size is given by:
P

ki2KMV(KX) ni =
P

ki2KMV(KX) max
�
1,
⌅
nNi
N

⇧�
where ki 2 KMV(KX) denotes the set of n minimum

values inKX selected in the �rst-level sampling. It is easy to show that the upper bound

for its size is 2n, and
P

ki2KMV(KX) ni � n holds whenever the number of unique

values in the join keymKX � n.

Analysis. Let pi = Pr[ti] be the probability of selection of one tuple ti in the �rst

sampling level, and qi = Pr[ti] be the selection probability of ti in the second-level. Since

we assume a uniform hashing function hu, in the �rst level any join-key value ti[K]

has a uniform inclusion probability pi = 1/mK , where mK is the number of distinct

values inK . In the second level, where we perform Bernoulli sampling ofNi tuples that

were sampled in the �rst level, we have that qi = 1/max
�
1,
⌅
nNi

N

⇧�
. Given that the

inclusion in the second level is independent of the �rst, the �nal probability of selecting

the tuple ti is Pr[ti] = piqi = 1/
�
mK ·max

�
1,
⌅
nNi

N

⇧��
. Here we can see that the tuple

selection probability is clearly dependent on the frequency distribution of the join-key

values. Note, however, that in the special case where join keys are unique, i.e.,mK = N ,

the sampling probability becomes uniform as Pr[ti] = 1/
�
N ·max

�
1,
⌅
n 1

N

⇧��
=

86
1/(N · 1) = 1/N . An example of this arises when creating the sketch Saug , as it always

aggregates the keys to a single value.

5.2.2 Proposed Approach: Tuple-based Sampling (TUPSK)

LV2SK sketches have important limitations. When a join key k is not selected for

inclusion in the sketch in the �rst-level sampling, none of the rows that contain k will

be included in the sample. Moreover, the sampling of a join key value does not take into

account its frequency in the table. To see why this is a problem, consider the following

extreme example.

Assume that we have a table Ttrain[KY , Y] of size N = 100. Moreover, let KY =

[a, b, c, d, e, f, f, f, ..., f] and Y = [0, 0, 0, 0, 0, 1, 2, 3, ..., 95]. Given that Pr[Y = 0] =

0.05 and Pr[Y = i] = 0.01 when i 6= 0, we have that the entropy of Y is Ĥ(Y) =

�0.05 log(0.05)� 95⇥ 0.01 log(0.01) ⇡ 4.5247. Now consider a LV2SK sketch of size

n = 5. In the case that the keys a, b, c, d, e are selected in the �rst-level sample, then

Strain[Y] = [0, 0, 0, 0, 0], and thus its entropy estimate Ĥ(Y) = �1 log 1 = 0. Given

that the entropy upper-bounds MI, we also have that the MI estimate between Strain[Y]

and any feature columnX , regardless of what its values are, must also be 0. Additionally,

note that the probability of selecting a tuple ti such that the key value is equal to f ,

Pr [ti[KY] = f], is 1/(6max(1, 4.75)) = 0.035 (since nNi
N

= 5 95
100 = 4.75), whereas for

each of the other key values is 1/(6max(1, 0.05)) ⇡ 0.167. This example illustrates

how dependence between the join key and the target attribute can lead to estimation

bias.

To address these problems, we propose a coordinated sampling scheme that (1)

considers individual rows as a sampling frame (i.e., each row is considered for sampling

individually) and (2) leads to identically distributed samples (i.e., each row has the same

87
probability of being sampled). Moreover, given that the probability of sampling each

row is uniform, the expected number of sampled rows that contain a given join key k

is proportional to the frequency of k in the original table. We refer to this method as

TUPSK.

Building TUPSK Sketches. To build TUPSK sketches, we select rows from Ttrain by

hashing keys as follows. We use the tuple hk, ji to identify the row where k appears

for the jth time in sequence, resulting in derived keys hk, 1i, hk, 2i, ..., hk,Nki. Then,

instead of selecting the rows based on the minimum hash values of hu(k), we select

tuples based on hu(hk, ji). The �nal sketch, however, stores only tuples containing the

hashed key and its associated value: hh(k), xki. In other words, the tuples hk, ji are

only used for deciding whether or not to include a row in the �nal sketch Strain.

When sketching Tcand, we handle repeated values as in LV2SK: we apply AGG to

the set {xk}, of values from X appearing with key k, to derive a single value xk =

AGG({xk}). Then we select tuples with the n minimum values of hu(hk, 1i), since the

aggregation results in unique keys. Hashing on hk, 1i provides sample coordination

between the sketches Strain and Saug.

Analysis. Let pi be the probability of selecting a tuple ti to be included in a TUPSK

sketch. It is easy to see that each hk, ji uniquely identi�es a row in the table. Since

hu is a uniform hashing function, pi = 1/N . Note that, unlike LV2SK sketches, the

probability is uniform regardless of the frequency distribution of the join keys. Note

also that, for the particular case of data augmentation, the tuples hk, ji also uniquely

identify the rows in the �nal left join since the join is many-to-one and its output has

the same size as the left table. Hence, the sample recovered by a sketch join is a uniform

sample of the full join result.

88
It is worth noting that not all samples in the sketch are coordinated. This happens

because the aggregation of tuples with repeated keys limits the domain of the tuples to

hk, 1i. In contrast, when sketching Ttrain, the domain of the tuples hk, ji depends on

the frequency distribution of the join key Ttrain[KY]. This implies that the hashes of all

tuples from Strain having j > 1 cannot match any tuples from Saug . Consequently, the

sampling of such tuples is equivalent to a Bernoulli sampling.

Finally, note that unlike in LV2SK, each repeated key in Ttrain may evict other

tuples from the n minimum values in Strain. While somewhat counter-intuitive, less

coordination means higher sample quality as this reduces dependence on the join

keys (i.e., the sample becomes closer to an independent Bernoulli sample). Overall,

our experimental results show that this scheme leads to a better trade-o� between

coordination and independence (Section 5.3.2).

Accuracy Guarantees. TUPSK provides unbiased uniform samples of the join, but

the actual estimation accuracy guarantees provided by our sketch also depend on the

selected MI estimator used. All MI estimators used in this chapter have been proven to

be consistent estimators [125, 79, 125] under some assumptions, such as i.i.d samples.

While TUPSK does not guarantee sample independence (due to coordination), our

experiments (Section 5.3.2.1) show that the estimates converge to true MI when the

sample size increases. Moreover, the high-probability error bounds for the empirical

entropy and MI using the MLE estimator proposed in [159] (and subsequently improved

in [37]) apply to sampling without replacement, which is similar to our setting. These

bounds guarantee that the approximation error (i.e., the di�erence between an MI

estimate computed on a subsample and the MI estimate computed on the full data)

reduces in a near square root rate with respect to the subsample size (i.e., the sketch

join size, in our case), and allow computing con�dence intervals around the estimate

89
that get tighter as the sketch join size approaches the full join size. While it is unclear if

all assumptions in this bound hold for the samples generated by TUPSK, we have also

observed this behavior in our experiments.

5.3 Experimental Evaluation

To evaluate the e�cacy of our proposed sketching methods, we performed exper-

iments using both synthetic and real-world data to answer the following questions:

(Q1) How accurate are sketches at estimating the true mutual information of attributes

obtained after the join? (Section 5.3.2.2); (Q2) How does join-key distribution a�ect the

MI estimation accuracy? (Sections 5.3.2.3 and 5.3.2.4); (Q3) How does accuracy vary

depending on target and feature data types and, thus, the applied MI estimator? (Sec-

tion 5.3.2); (Q4) How do sketches behave when estimating MI on real data collections?

(Section 5.3.3).

Mutual Information Estimators. Many MI estimators have been proposed. We

consider a representative set of estimators that are widely used in practice. Unless other-

wise noted, we choose estimators based on the data types of variables X and Y . When

dealing with real data, we consider the following cases: (1) If both X and Y have string

values (i.e., the discrete-discrete case), we use the maximum likelihood estimator (MLE);

(2) If X and Y are numerical variables (e.g., �oat, integer), we consider the MixedKSG

estimator [79]. This estimator is able to handle not only continuous distributions but

also mixtures of discrete and continuous distributions in the same variable, making it

�exible for dealing with real data where the distributions are unknown; (3) When one

of the variables is numerical and the other is string (the discrete-continuous case), we

90
use the estimator proposed by Ross in [133] that handles this case, referred to here as

DC-KSG.

Sketching Methods. We evaluate LV2SK and TUPSK (Section 5.2). We also imple-

mented another two-level approach that performs weighted sampling based on key

frequencies (using priority sampling [66]) instead of the uniform sampling used in

the �rst level of LV2SK, which we refer to as PRISK. Since its results are very similar

to those of LV2SK, we omit them for the analysis using synthetic data. As baselines,

we compare against independent Bernoulli sampling (INDSK) and a straightforward

extension of CSK sketches (Chapter 4) that estimates MI instead of correlation measures.

Since CSK does not prescribe how to handle repeated join keys, we use the �rst value

seen associated with a join key (instead of applying an aggregation function that would

modify the original values).

5.3.1 Synthetic Data Generation

To better understand the behavior of the proposed sketches and answer questions

Q1, Q2, and Q3, we used synthetic data to control both the data distribution and join-key

dependencies. We designed a data generation process to create tables given the join

key distribution and true MI between X and Y post-join as input. This is achieved

by generating the post-join target Y and feature X by drawing random values from

analytic distributions as the join result. Then we decomposed the join into two separate

tables, establishing connections using key (KY) and foreign-key (KX) attributes. This

approach allows us to calculate the true MI after the join, providing a reliable measure

to evaluate the e�ectiveness of our method.

Target/Feature Generation. In the �rst experiment, we generated random variables (X, Y)

using a multinomial distribution Mult(m, hp1, p2i), which we refer to as Trinomial.

91
This generates three discrete random variables that assume integer values in {1, ...,m}.

Each value represents the number of times that each of the three possible outcomes has

been observed inm trials, with each outcome having probabilities p1, p2, and (1� p1�

p2). The number of trials m is chosen based on the desired number of distinct values in

the data. We refer to the �rst two variables associated with p1 and p2 as X and Y , and

the third variable is discarded.

To control the desired level of MI between X and Y , we use the following property

of the trinomial distribution (see [80, chapter 11.1]). The central limit theorem ensures

thatMult(m, hp1, p2i) converges to a bivariate normal distribution N(µ, �) with mean

µ = hmp1,mp2i and variance �2 = m
p
pipj(�ij �

p
pipj) asm ! 1. Hence, solely for

the purpose of selecting model parameters to achieve a desiredMI, we can use the closed-

form MI formula from the analogous bivariate normal distribution to approximate the

MI for the trinomial, which is known to be �1
2 ln (1� r2) where r is the Pearson’s

correlation coe�cient ofX and Y . Based on this and standard properties of the trinomial

distribution, we derived the following algorithm to select the distribution parameters

p1 and p2:

1. Choose the true mutual information Itrue ⇠ Unif(0, 3.5), then compute the equiv-

alent correlation r =
p

1� exp (�2 · Itrue); note that Itrue = 3.5 is equivalent to

r ⇡ 0.999.

2. Choose p1 ⇠ Unif(0.15, 0.85) (as the approximation works better when p is not

near to 0 or 1).

3. Finally, calculate p2 using the values of r and p1 based on the trinomial variance and

closed-form expression for correlation r = �p1p2/
⇣p

p1(1� p1)
p
p2(1� p2)

⌘
. If

p2 is not in the desired range (i.e., [0.15, 0.85]) then repeat.

92
The approximation using bivariate normal distribution above was only used to choose

the parameters. To compute the true MI of the distribution, we used the (open-form)

entropy formula for the trinomial distribution [160].

As done in [79], we also generated a combination of discrete and continuous data for

X and Y , respectively, which we refer to as CDUnif. X follows a uniform distribution

over the integers {0, 1, ...,m� 1}, while Y is uniformly distributed within the range

[X,X + 2] for a given X . The true mutual information between X and Y can be

computed as I(X, Y) = log(m) � (m � 1) log(2)/m. Note that here the MI is a

function of parameter m, which also represents the number of distinct values in Y .

Distribution Parameters. For Trinomial, we restrict generated data to having MI

2 [0, 3.5] and m 2 {16, 64, 256, 512, 1024}. Since both X and Y are discrete and

have ordered numeric values, it is possible to treat the data as either discrete, mixture,

or continuous. A marginal variable can be made continuous via perturbation, by

breaking ties using random Gaussian noise of low magnitude without any signi�cant

impact on the MI [102]. Thus, by doing this in just one of the marginals we can

use an estimator for discrete-continuous variable pairs such as the DC-KSG [133].

Additionally, MixedKSG [79] can also be applied to variables with repeated values as

it can handle ties naturally based on its formulation. Hence, to evaluate the impact of

these estimators, we consider three representative data type combinations: we use the

MLE for discrete-discrete, MixedKSG [79] for mixture-mixture, and DC-KSG [133] for

discrete-continuous.

For CDUnif, we drawm uniformly in the range [2, 1000], which leads to MI values

in the range [0.3, 6.2]. In this distribution, Y is continuous and X is discrete. Hence,

we only report results using MixedKSG [79] and DC-KSG [133], which are able to deal

with discrete and continuous distributions seamlessly without any data transformation.

93
Decomposition Into Joinable Tables. To decompose (X, Y) into tables Ttrain and Taug

that can be joined to include X and Y as columns, we employ two di�erent methods of

generating key and foreign-key columns: KeyInd for one-to-one joins and KeyDep

for many-to-one joins (which allows us to answer Q2). KeyInd provides maximum

independence between keys by generating (sequential) unique join keys inKX , leading

to a maximum number of di�erent key values inKX pointing to the same value in X

(e.g., if the value x appears 10 times in X then we have 10 di�erent values in KX that

co-occur with x). This method establishes a one-to-one relationship between attributes

KY 2 Ttrain and KX 2 Taug. KeyDep simulates a strong dependence of join keys

by making the value in KX , for each row, equal to the value in X . Hence, we have a

single value in KX for all the occurrences of a value in X , establishing a many-to-one

relationship. Note that KeyDep is only applicable when X is discrete, as it would

create unique join key values for continuous data distributions. Moreover, while the

marginal distribution of X (and hence key frequencies in KX) is uniform for CDUnif,

it is a binomial distribution for Trinomial. Note also that although these methods

represent two contrasting join scenarios, both methods enable table joins that exactly

recover (X, Y).

5.3.2 Experiments Using Synthetic Data

5.3.2.1 True vs. Estimated MI on Full-Table Joins

Before presenting our sketch evaluations, we conducted a preliminary experiment

to assess the behavior of di�erent MI estimators. Our goal is to establish a baseline of

the expected behavior of the MI estimators, especially when dealing with real data in

Section 5.3.3, where the true MI is unknown. For each data distribution, we consider

all MI estimators that can be used with the given data types without applying any

94

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Analytical MI

0

1

2

3

4

Sk
et

ch
 M

I E
st

im
at

e
LV2SK, Trinomial(m=512), n=256

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Analytical MI

0

1

2

3

4

Sk
et

ch
 M

I E
st

im
at

e

TUPSK, Trinomial(m=512), n=256

DC-KSG KeyDep MLE KeyDep Mixed-KSG KeyDep
DC-KSG KeyInd MLE KeyInd Mixed-KSG KeyInd

Figure 5.1: True MI vs MI estimates computed using sketches of size n = 256. Each
plot shows a di�erent sketching method (LV2SK on the left and TUPSK on the right)
and each line shows results for di�erent data types/estimators and join key generation
processes. TUPSK is more robust to the join key distribution.

data transformations as described above: for Trinomial we used MLE, DC-KSG, and

MixedKSG; for CDUnif we used DC-KSG and Mixed-KSG. We compare the true MI,

calculated via the distribution parameters that were used to generate the data, to MI

estimates obtained from the fully-materialized join containing N = 10k rows. For both

Trinomial and CDUnif, the root mean squared error (RMSE) is smaller than 0.07,

and the Pearson’s correlation coe�cient is greater than 0.99. We omit plots for these

results since they are close to a straight line, as expected. The results demonstrate that

MI estimates obtained from the full-table join provide a good approximation for the

true MI (computed analytically), regardless of the data type assumptions made by each

estimator. Although we can notice some small bias and variance in the range of lower

true MI (especially for Trinomial), the overall error is very small in this setting with

a large sample size.

95
5.3.2.2 Assessing Sketch Estimation Accuracy

Figure 5.1 shows the results for MI estimates for the Trinomial distribution

(m = 512) computed using the proposed sketching methods, LV2SK and TUPSK. In this

setting with limited sample size (n = 256), we see that both the bias and variance of

the estimators increase signi�cantly. Here, the MI is overestimated and the magnitude

of the overestimation depends on the type of MI estimator being used: while the bias is

highest for MLE estimator (,) when the true MI is low, MixedKSG (,) reaches a

peak bias around the mid-range MI values.

While the bias and variance are also in�uenced by other factors (as discussed below),

this result underscores the signi�cance of selecting the appropriate estimator for the

data type at hand. For example, while it may be simpler to use an MLE estimator

with discrete ordered data (or, e.g., with binned continuous data), using a k-Nearest

Neighbors approach may lead to a smaller bias.

Furthermore, this result suggests that comparing estimates of columns with di�erent

data types, which require distinct estimators, may not yield meaningful results due to

the distinct bias and variance properties of di�erent estimators. While the results of

these estimators converge to the true MI when the sample size is large enough, as shown

in Section 5.3.2.1, the approximation accuracy depends on many factors such as the data

distribution, the sample size, and the underlying true MI. When these are unknown,

it becomes challenging to determine whether such comparisons are meaningful. In

Section 5.3.3, we further discuss this issue based on our results on data sourced from

real-world open data repositories.

96
5.3.2.3 E�ect of the Join Key Distribution

In Section 5.2, we described two di�erent methods to select samples to include in

the sketch. In Figure 5.1, we can visualize how the join-key distribution a�ects the

MI estimation accuracy of these methods. Speci�cally, we can compare the estimation

di�erence caused by KeyInd vs KeyDep in a given estimator. For instance, consider

the LV2SK method in Figure 5.1(left). When we compare the lines that represent the

MLE estimator (,), we note that the bias from KeyDep () is larger than that from

KeyInd (). Similarly, KeyDep leads to increased bias for the MixedKSG estimator

() but, for the DC-KSG estimator, KeyDep leads to a small downward bias ().

Di�erently from LV2SK, TUPSK is not as a�ected by the join-key distribution. We

can see in Figure 5.1(right) that TUPSK is able to attain the same performance regardless

of the join-key distribution. This is because the TUPSK sampling scheme reduces the

dependence on the join keys by hashing on the tuple hk, ji, which leads each row being

sampled with uniform probability (given that each tuple hk, ji is unique in table Ttrain).

LV2SK on the other hand, samples entries non-uniformly and introduces additional bias

due to its dependence on the key frequency distribution and the existing key-target

correlation in the KeyDep distribution.

5.3.2.4 E�ect of Distinct Values

To assess the impact of the number of distinct values in the distribution on the MI es-

timation accuracy, we vary the parameterm of Trinomial and CDUnif distributions

while keeping the desired sketch size n = 256 constant. This means that the ratio m/n

increases making it increasingly harder to estimate the MI, e.g., when X ⇠ Uniform

and m/n = 1 we expect to have only 1 sample to estimate the probability mass p(x)

of a given value x 2 X . For CDUnif, m = 256 is equivalent to I(X, Y) ⇡ 4.85. As

97

Figure 5.2: True MI vs MI estimates computed using sketches of size n = 256 for
CDUnif. Each plot shows a di�erent sketching method while each line shows results
for di�erent data types/estimators and join key generation processes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Analytical MI

0

1

2

3

4

Sk
et

ch
 M

I E
st

im
at

e

Trinomial(m=16)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Analytical MI

0

1

2

3

4

Sk
et

ch
 M

I E
st

im
at

e

Trinomial(m=64)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Analytical MI

0

1

2

3

4

Sk
et

ch
 M

I E
st

im
at

e

Trinomial(m=256)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Analytical MI

0

1

2

3

4
Sk

et
ch

 M
I E

st
im

at
e

Trinomial(m=512)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Analytical MI

0

1

2

3

4

Sk
et

ch
 M

I E
st

im
at

e

Trinomial(m=1024)

DC-KSG MLE Mixed-KSG

Figure 5.3: Sketch MI estimate versus the true MI computed using distribution parame-
ters. Sketch size is n = 256 for all plots.

Figure 5.2 shows, the MI estimators break down when I(X, Y) approaches 4.85 for

the CDUnif distribution. For LV2SK, the DC-KSG estimator completely breaks down

even earlier, around I(X, Y) ⇡ 4.25. In contrast, TUPSK degrades more gracefully as

I(X, Y) increases.

Figure 5.3 shows the impact of increasingm for the Trinomial distribution. Here,

the marginal distributions ofX and Y are non-uniform (binomial) distributions (unlike

CDUnif which has uniform marginals). The plots clearly show that increasingm leads

to increased bias for estimators that handle discrete distributions such as MLE () and

MixedKSG (). Although the estimators do not completely break down here, we can

98
see that the bias for the MLE estimator () is so large whenm = 1024 that all estimates

are considered to have a high MI in the small range [2.5, 3.5].

Note that the maximum true MI value for low values ofm is smaller than for largem.

This is due to our data generation process (Section 5.3.1), which relies on the central limit

theorem and the bivariate normal distribution to approximate the MI. This, however,

does not a�ect our results since we use the exact MI formula to compute the analytical

MI in Fig. 5.3.

5.3.2.5 Comparison to Other Baselines

In Table 5.1, we report the average sketch join size and mean squared error (MSE)

for all sketches, including the additional baselines: independent sampling (INDSK) and

correlation sketches (CSK). Results are computed for sketches of size n = 256 and

include tables with di�erent join key distributions (KeyDep, KeyInd) and di�erent

distribution parameters (m). The results demonstrate that INDSK has di�cultymatching

join keys, resulting in a smaller join size than coordinated sampling approaches, which

leads to large MSE. Coordinated sampling methods achieve signi�cantly larger join

sizes, making them more e�ective strategies. Among them, TUPSK achieves the best

MSE, which is due not only to the larger number of samples recovered by the sketch

join but also to unbiased samples. The average join size of the two-level sampling

sketches is highly sensitive to the join key distribution: when keys are unique (as in

KeyInd), it behaves as TUPSK, and a sketch of size n yields n join samples. However,

when there are repeated keys, it may lead to either more or fewer samples than n. In

our experiments, the average join size increases asm increases.

99
Dataset Sketch Avg. Sketch Join Size % MSE

CDUnif

CSK 194.2 75.87 4.56
INDSK 107.9 42.16 9.57
LV2SK 232.9 90.99 2.94
PRISK 232.9 90.99 2.94
TUPSK 256.0 100.00 0.77

Trinomial

CSK 155.2 60.62 1.37
INDSK 133.7 52.22 1.19
LV2SK 255.9 99.94 0.32
PRISK 255.9 99.94 0.32
TUPSK 256.0 100.00 0.22

Table 5.1: Comparison of MI estimate versus the true MI using sketches of size n = 256.
The “%” column is the percentage of “Avg. Sketch Join Size” relative to sketch size n.

5.3.3 Experiments Using Real Data

We now evaluate the behavior of our sketches on real-world data collected from two

di�erent open-data portals: the World Bank’s Finance (WBF) [164] and the NYC Open

Data (NYC) [121]. Our experimental data consists of snapshots of these repositories

collected in September 2019 using Socrata’s REST API [147].

From these collections, we sample pairs of tables Ttrain and Taug as follows. For each

table t in a data repository, we �rst create the set Pt of two-column tables, denoted

as TA[KA, A], comprised of all pairs of join-key and data attributes hKA, Ai from

Pt such that KA is a string attribute and A contains either strings or numbers (i.e.,

ints, longs, �oats, or doubles).2 Let C =
S

t
Tt be the set of all two-column tables in

the repository. We then draw a uniform sample of the set of pairwise combinations

PC = {(Ti, Tj) | Ti, Tj 2 C} and use the tables in these pairs as Ttrain and Taug. The

�nal sample includes 36k table pairs for the WBF collection and 59k pairs for the NYC

collection. The average domain size of join attributes for the left and right tables
2We used the Tablesaw library [150] to perform type inference.

100
are approximately 3.1k and 3.5k for WBF, respectively, and 11.2k and 1k for NYC,

respectively. Finally, the average full join size is 34k for WBF and 8.5k for NYC.

Given that it is not possible to know the true distribution of the data in these tables,

we use the MI estimated over the full data as a proxy for the true MI. As shown in

Section 5.3.2.1, the full join provides a good approximation of the true MI when the

join size is large. Hence, from now on we compare the sketch estimates to the full-join

estimates. Even though the full join may not always re�ect the true MI, it is the only

option available in many practical scenarios [159].

5.3.3.1 Approximation Accuracy

Table 5.2 summarizes the results for each sketching method for the two dataset

collections. The results are computed using sketches with n = 1024. To discard

meaningless estimates, we only include estimates computed on sketch join size greater

than 100. First, we con�rm that LV2SK, which may use a higher storage size for a

given budget n (see Section 5.2.1), tends to generate a larger average join size. However,

despite using less storage, TUPSK outperforms LV2SK in terms of estimation accuracy

measured by the mean squared error (MSE) metric.

We use Spearman’s correlation, a rank-based measure, to quantify how well the

ranking obtained using MI estimates computed from sketches approximates the ranking

of MI estimates computed over the full tables. We can see that Spearman’s correlation

for TUPSK is the strongest. This is signi�cant since for automatic data augmentation

it is important to rank features based on their importance. This result con�rms that

TUPSK is able to generate higher quality samples than its competitors.

101

Dataset Sketch Avg. Join Size Spearman’s R MSE

NYC
LV2SK 230.9 0.81 1.41
PRISK 231.1 0.79 1.36
TUPSK 185.3 0.86 0.93

WBF
LV2SK 231.2 0.40 1.75
PRISK 226.6 0.40 1.76
TUPSK 194.9 0.45 1.46

Table 5.2: Comparison of MI estimate using di�erent sketching strategies versus the
full join. While LV2SK can theoretically have a sketch size twice as large as TUPSK,
in practice their sketch join sizes is similar. Even with this disadvantage, TUPSK
outperforms LV2SK in estimation accuracy (stronger Spearman’s R correlation) using
less storage.

5.3.3.2 E�ect of Sketch Join Size

In Figure 5.4, we break down the results by data types (and hence, MI estimators)

and sketch join size. A larger sketch join size indicates that the tables are more joinable

(i.e., have a larger overlap) and that the MI estimator is given a larger number of samples.

Here, we can observe a behavior similar to what we observed with synthetic data. In

particular, we note that when the sample size is small, (1) the MLE estimator () tends

to overestimate the MI, and (2) the KSG-type estimators (,) tend to break down and

generate estimates close to zero.

5.3.3.3 Comparing MI Estimators

Another notable di�erence is the magnitude of the MI estimates generated by

di�erent estimators: the MLE estimator computes MI values that are signi�cantly larger

than the ones generated by KSG-based estimators: while MLE estimates reach the

range [4, 6], KSG-based estimates are never larger than 2. Although we cannot con�rm

whether this is an artifact of the estimator limitations or if numerical data indeed leads

to smaller MI values, this result suggests that comparing MI estimates from di�erent

102

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 128

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 256

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 512

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 768

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 128

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6
S

ke
tc

h

Sketch Join Size > 256

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 512

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 768

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 128

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 256

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 512

0 1 2 3 4 5 6 7 8 9
Full-Join

0

2

4

6

S
ke

tc
h

Sketch Join Size > 768

DC-KSG MLE Mixed-KSG

Figure 5.4: Sketch MI estimate versus the MI estimate computed using the full join
output for tables from the WBF collection. Sketches are created using TUPSK with size
n = 1024 for all plots.

estimators may not be reasonable. For example, when ranking attributes for data

discovery, it might be preferable to produce separate rankings of di�erent MI estimators

and then compare the utility of top-ranked attributes using a downstream (task-speci�c)

evaluation measure (e.g., the increase in accuracy of an ML model computed on the

labels).

5.3.4 Performance Evaluation

Due to space constraints, we omit a detailed runtime evaluation since the e�ciency

of the proposed sketches is similar to others evaluated in previous work [136, 137]. For

completeness, we provide exemplar numbers for sketch size n = 256. As the table

size grows from N = 5k to N = 20k, the full join size time increases from 0.35ms to

2.1ms, whereas the sketch join time grows from 0.03ms to 0.18ms. Similarly, while MI

103
estimation time increases from 2.2ms to 10.7ms, the sketch is approximately constant

and took only 0.1ms.

104

Chapter 6

Weighted Join-Correlation Queries

and QCR Indexes

In Chapter 4, we introduced Join-Correlation Queries: given an input query table TQ

and a tabular dataset collection D, they retrieve tables in D that are both joinable with

TQ and contain columns correlated with one or more columns in TQ. Answering these

queries poses signi�cant scalability challenges, and our approach achieves scalability

by providing approximate answers at the cost of precision and recall. In particular, we

used a two-stage approach that relies on inverted indexes and randomized sketching

algorithms: it �rst retrieves the top k most joinable (candidate) tables using indexes

and then re-ranks them using approximate correlation estimates computed e�ciently

with data sketches.

While this sketching-based approach is e�ective at estimating correlations, typically

there are many more joinable tables than tables that are both highly joinable and contain

a correlated column. Therefore, by retrieving only the top k most joinable tables in

the �rst stage, this approach may miss highly correlated tables that are not as highly

105
joinable as other uncorrelated tables. Additionally, the user has no �ne-grained control

over the level of joinability and correlation desired. For instance, given a table TA

with joinability (j) and correlation (r) scores rA = 0.95 and jA = 0.92, and a table TB

with scores rB = .92 and jB = 0.95, it is not possible to specify which one should be

preferred using a standard join-correlation query.

Chapter Contributions. In this chapter, we propose a new approach to correlated

dataset search. First, we de�ne a more general version of join-correlation queries that

allows users to specify the balance between joinability and correlation that is required

for speci�c applications. Moreover, we propose a new hashing scheme that enables the

retrieval of columns that are both joinable and correlated in a single step. This leads both

to an increase in recall and overall ranking quality at a smaller storage cost compared

to existing approaches.

Our method is based on a partition of the numerical plane into quadrants, inspired by

a simple correlation estimator known as Quadrant Count Ratio [89]. This partitioning

scheme allows us to apply an additional hashing step that takes into account both the join

and the numerical attributes of interest. By doing so, we reduce the problem of �nding

join-correlated tables to the simpler problem of set overlap search between hashes,

which our method generates for the query and for the tables in the data collection.

The remainder of this chapter is organized as follows:

• In Section 6.1, we de�ne the new class of weighted join-correlation queries, of

which join-correlation queries are a special case;

• In Section 6.2, we describe a novel hashing scheme and new sketch-based index,

theQCR index, that supports e�cient correlated table search over large collections;

106
• In Section 6.3, we describe an experimental evaluation using synthetic and real-

world dataset collections which shows that: 1) Our QCR-based retrieval approach

attains higher precision and recall and a better balance between ranking accuracy

and joinability, when compared to existing approaches; 2) The QCR index achieves

a better space-accuracy trade-o�: for the same level of recall and ranking accuracy,

the QCR index needs sketch sizes that require only about 1/4 of the storage

needed by our CSK-based approach (from Chapter 4). Consequently, the QCR

index reduces the number of terms required per table, which leads to better

query processing times when compared to retrieval strategies that attain a similar

retrieval quality.

6.1 Weighted Join-Correlation Queries

Let TQ be a query table comprised of a categorical column KQ and a numerical

column Q, and D be a dataset collection containing multiple tables TC , such that

each table has a categorical column KC and a numerical column C . Columns KQ

and KC are the join attributes of tables TQ and TC respectively, and they may have

overlapping sets of values that can be used to join TQ and TC , resulting in a new table

TQ./C . Using the relational algebra notation, we say that TQ./C = ⇡k,qk,ck(TQ ./KQ=KC

TC) = {hk, qk, cki : k 2 KQ \KC}. Finally, the values of numerical columns Q and C

associated with each key k 2 KQ \KC are denoted as qk and ck respectively. Note that

the above de�nition assumes that k uniquely identi�es one row in the table. However,

real-world data often contain repeated categorical values (as illustrated in column KC

from table TC of Figure 6.1). In this example, the repeated key “a” is associated with

the set of values {5.5, 4.5}. In such cases, we are interested in the table generated after

applying an aggregate function (e.g., AVG, SUM, MAX, etc.) over the values associated

107
T Q

KQ Q
a 6.0
b 4.0
c 2.0
d 3.0
e 0.5
f 4.0
g 2.0

T C

KC C
a 5.5
a 4.5
b 4.0
b 2.0
c 2.5
d 4.0

T Q./C

KQ./C QQ./C CQ./C

a 6.0 5.0
b 4.0 3.0
c 2.0 2.5
d 3.0 4.0

Figure 6.1: An example of a query table TQ, a candidate table TC , and the joined table
TQ./C created after joining TQ with TC , and aggregating repeated keys using the AVG

aggregate function. We are interested in �nding candidate tables TC in a collection D
such that the after-join correlation between attributes QQ./C and CQ./C is high.

with the repeated values of k, e.g., ca = AVG({5.5, 4.5}) = 5.0. This is the desired

behavior for applications such as data augmentation for data analysis and machine

learning models, where the goal is to add new columns (features) to an existing training

dataset while maintaining the same number of rows. Figure 6.1 shows a complete

example of query and candidate tables, along with their corresponding join table after

value aggregations.

Our goal is to query a dataset collectionD with a query table TQ to �nd other tables

TC that are not only joinable with TQ, but that also contain the top-k numerical columns

correlated with Q after a join. We recall the query de�nition from Section 4.3:

De�nition 3 (Top-k Join-Correlation Query). Given an integer k > 0 and query table

TQ (containing a column Q and a join column KQ), �nd the top-k tables TC in a dataset

collection such that TC is joinable with TQ on KQ and has the strongest (after-join)

correlations between the columns QQ./C and CQ./C from the joined table TQ./C .

Note that while this de�nition only focuses on high correlation, many applications

might also require a high degree of joinability. Consider, for instance, the problem of

relational data augmentation [39]: the goal is to �nd new, relevant candidate columns

108
to be included as features in a machine learning model, augmenting the model’s initial

feature table with such columns. When searching large dataset collections for joinable

tables, it is likely that we will encounter large tables that have only a few coincidental

overlapping values (e.g., |KQ| and |KC | could have both over a thousand rows, but

their overlap could be only a few values, say |KQ \KC | = 3). Yet, a few samples can

yield very high correlations even tough they may not be signi�cant and have very low

p-values. In this case, a new column that is highly correlated with the model’s target

may not improve the quality of the initial model if the overlap between its initial feature

table’s keys and the new column’s keys is too low. Moreover, this would lead to many

missing data entries in the resulting joined table, and deciding how to handle them (e.g.,

through a missing data imputation strategy, or by simply removing them) is not trivial.

Therefore, given two tables with similar correlation levels, the table with the highest

join key overlap is preferred for retrieval.

To take into account the user preferences regarding joinability and correlation, we

de�ne a more general class of join-correlation queries:

De�nition 5 (Weighted Top-k Join-Correlation Query). Given TQ, an integer k > 0,

and a user preference weighting functionW (j, r) that combines a joinability score j and

correlation coe�cient r, �nd the top-k joinable tables TC 2 D with the highest (after-join)

scores assigned byW based on the correlation r between numerical columns QQ./C and

CQ./C and joinability score j between TQ and TC .

109
We can de�neW to express a user’s preferences regarding the trade-o� between

joinability and correlation, as follows:

W (j, r) =

8
>><

>>:

w if j > 0 (i.e., the tables are joinable)

0 otherwise
(6.1)

where r is the absolute value of a correlation coe�cient such as Pearson’s correlation,1

j is a joinability score such as the Jaccard Containment (JC), and w is a combination of

j and r.

A natural choice for w is a weighted mean of correlation or joinability. For example,

the weighted geometric mean of a set of real numbers X = {x0, ..., xn} is de�ned as

(
Q

n

i=1 x
↵i
i
)1/

Pn
i=1 ↵i , where ↵i is the weight associated with each number xi. Applying

it to our setting, we get that:

w = (j↵jr↵r)1/(↵j+↵r),

where ↵j is the weight for joinability j and ↵r is the weight for correlation r.

Note that we can express the join-correlation query from De�nition 3 using De�ni-

tion 5 and Equation 6.1 by de�ning ↵r = 1 and ↵j = 0, in which case w = r. Similarly,

we can express the “pure” joinable table search objective by de�ning ↵r = 0 and ↵j = 1,

in which case w = j. In the equal-weights special case where ↵j = 1 and ↵r = 1, w

becomes w =
p
j ⇤ r.

De�ning the weights and combination functions between correlation and joinability

is application-speci�c and beyond the scope of this dissertation. Here, we focus on the
1We use the absolute value due to the assumption that both positive and negative correlations are

of interest, but W (j, r) and w can be adjusted accordingly if this is not the case. As we show next, this
simpli�es the problem.

110
version of correlation queries proposed in Chapter 4 (De�nition 3), where w = r, and

on an equal-weights case where high correlation and joinability are equally desirable.

Speci�cally, we propose a new hashing and indexing scheme that allows us to retrieve

tables that maximize an equal-weight weighting function (details in Section 6.2).

As we show in Section 6.3, this retrieval method enables not only the discovery of

tables with both high correlation and joinability but also signi�cantly improves the

precision and recall when the objective is high correlation only (w = r), the objective

from De�nition 3 discussed in Chapter 4.

6.2 Single-Stage Correlated Table Retrieval

Our approach to e�ciently answer weighted top-k join-correlation queries is based

on a combination of sketching and query processing algorithms for fast top-k document

retrieval [153]. We propose a new hashing scheme that derives terms to be indexed

in an inverted index, which can then be used to retrieve the correlated tables. Using

this hashing scheme, the task of retrieving correlated tables is reduced to �nding the

top-k candidate tables that have the most hashed terms in common with the query

table. This allows us to apply existing query processing algorithms for document

retrieval [26, 60, 153] to retrieve correlated tables.

6.2.1 The QCR Hashing Scheme

A challenge in applying document retrieval algorithms to correlated table search is

that these algorithms are based on termmatching (discrete values), whereas correlations

are derived from real numbers. To workaround this problem, our previous approaches

from Chapter 4 proposed to retrieve joinable tables by matching tables using only the

111

Figure 6.2: An example of the four quadrants, where green points () contribute to
positive correlation and blue points () contribute to negative correlation.

values from the join columns. This approach forces the introduction of an additional re-

ranking step that detects tables that are joinable but do not contain correlated columns.

To overcome this problem, we propose a new hashing scheme that allows considering

both the join keys and the numeric values associated with each key. Our hashing scheme

is based on the correlation estimator known as Quadrant Count Ratio (QCR) [89]. The

QCR estimator is de�ned as:

rQCR =
n(I) + n(III)� n(II)� n(IV)

N
,

where n(i) is the number of samples located in the ithquadrant, and N is the total

number of samples. This is illustrated in Figure 6.2.

The QCR estimator is simple and has multiple properties in common with popular

correlation coe�cients (e.g., Pearson’s, Spearman’s and Kendall’s Tau) [89]. For instance,

it yields numbers in the range [�1, 1]; uncorrelated data has correlation close to 0; and

data with perfect positive or negative correlations according to these measures also

have perfect QCR correlations. Therefore, the QCR not only provides a good basis to

112
develop a retrieval strategy for these correlation coe�cients but also provides a simple

intuition for how to partition the continuous space of a set of numeric values {x} into

a binary space (e.g., x > 0 and x < 0).

For our problem, �nding tables that are both correlated and joinable, it is not

necessary to accurately estimate the rQCR coe�cient for all joinable tables. Instead, to

�nd large positive correlations, it su�ces to �nd tables that maximize the number of

points in quadrants I and III, while to �nd large negative correlations, points need to be

in quadrants II and IV.

The absolute rQCR correlation for the joined table TQ./C is equal to:

|rQCR| =
|N+ �N�|

N\ , (6.2)

where N\ is the number of points after the join (i.e., the number of rows in the joined

table), N+ = n(I) + n(III) is the number of points in the positive quadrants, N� =

n(II) + n(IV) is the number of points in the negative quadrants.

Note that Equation 6.2 violates the non-negative monotonicity property required by

the top-k query processing algorithms [153, 71]: encountering a point that lies in the

quadrants II and IV could lead to a decrease of the current top-k table scores. However,

we can show that to maximize |rQCR|, it su�ces to individually maximize N
+

N\ or N
�

N\ .

To see this, �rst observe that, by de�nition,N\ = N++N�. Thus,N� = N�(N+)

and so by maximizing N+ we are also minimizing N�. Substituting N� = N\ �N+

(or N+ = N\ �N�) in the equation for rQCR, we get that:

rQCR = 2
N+

N\ � 1 and rQCR = �
✓
2
N�

N\ � 1

◆
.

113
In these equations, it is clear that rQRC > 0 when N

+

N\ > 1
2 and that the absolute

correlation |rQCR| assumes maximum value when N
+

N\ is maximized or minimized.

Moreover, maximizing |rQCR| is equivalent to maximizingmax(N
+

N\ ,
N

�

N\).

In other words, we can split the problem of �nding tables with the highest correla-

tions into two sub-problems of �nding the top-k tables that have the maximum between
N

+

N\ and N
�

N\ , which are monotone functions. In what follows, we propose a hashing

scheme that allows us to achieve this goal.

The QCR hashing scheme builds on the sketching strategy proposed for join-

correlation estimation in Chapter 4. For each table TC = hKC , Ci, we �rst build a

correlation sketch SC . The sketch is then used to derive a set of terms TC to represent

the table in the inverted index. To make this chapter self-contained, we will �rst brie�y

describe how to build these sketches (Section 6.2.2), and then we will describe how to

compute the QCR index terms from sketches (Section 6.2.3). Here, we will use the CSK

sketches described in Chapter 4, but one could also use TUPSK (described in Chapter 5)

when the application does not allow aggregating values associated with repeated join

keys (e.g., when performing left joins for data augmentation with repeated join keys on

the left table). We refer the reader to Chapter 5 for details on TUPSK sketches and the

e�ect of repeated values in join keys.

6.2.2 Building the Correlation Sketches

A key idea behind correlation sketches is to use hashing techniques to consistently

choose the keys from each table that are included in the sketch. We use two di�erent

hashing functions, h and hu, to create a sketch SC . The �rst of them, h, is a collision-free

hash function that maps the key values k 2 KC onto distinct integers, uniformly at

random. Given that the hashed keys h(k) are unique, they are used as tuple identi�ers

114
in the sketch. The second function, hu, maps the hashed keys h(k) uniformly and

randomly onto the unit range [0, 1]. This allows for the selection of a small sample

of n tuples hh(k), cki from a table TC = hKC , Ci. In other words, SC includes the

n tuples hh(k), cki with the minimum values of hu(k), i.e., SC = {hh(k), cki : k 2

min(k, hu(k))}, where min is a function that returns a set containing the keys k with

the n smallest values hu(k). In the case where the set {k} contains repeated keys, the

values ck can simply be aggregated using aggregate functions as described in Section 6.1.

Building sketches e�ectively reduces large tables to a sample that contains only

n tuples, while guaranteeing with high probability that di�erent sketches will have

similar sets of hashed keys h(k) if their original tables are joinable. Moreover, a pair

of sketches SQ and SC can be used to compute correlations by creating joined sketch

SQ./C and applying any correlation estimator (see Chapter 4).

6.2.3 Building the QCR Index Terms

Given the sketch for table TC , we derive a set of terms TC = {tk} to represent TC

in the inverted index. Since we aim to estimate the ratio of points that fall into each

quadrant after the join between tables TQ and TC , our term hashing scheme must satisfy

two constraints. Given two sets of hashed terms TQ and TC , derived from tables TQ and

TC respectively, any pair of hashed terms ti 2 TQ and tj 2 TC must be equal only if

(1) their original join key values are the same, and (2) their numerical values belong to

the same quadrant. To satisfy these constraints, we derive index terms tk as a function

of the set of numerical values {ck} 2 SC and of the hashed key h(k). Speci�cally, we

115
compute tk as:

tk =

8
>><

>>:

h(h(k)�+1) if ck � µc > 0

h(h(k)��1) if ck � µc < 0

(6.3)

where µc is the average of {ck}, and � denotes concatenation of a hash h(k) and the

quadrant ID. Points which ck � µc = 0 do not contribute to correlation and are ignored.

Note that µc is a reference point used to partition the quadrants. As illustrated in

Figure 6.3, this operation can be seen as a translation of the coordinate system to be

centered at zero (mean centering), and most correlation measures are not a�ected by

this transformation [136].

In the example of Figure 6.3, our hashing scheme assigns the same hash value to

hb, cbi 2 C and hb, qbi 2 Q because their join key is b, and both cb and qb are greater

than µc and µq, respectively. However, it would not assign the same hash value to cb

and qb if, for example, cb were less than µq . Moreover, note that the terms generated for

j and h would not match the terms for any other point because their key values are

di�erent, and we assume that h is collision-free.

It is worth noting that we estimate µc using the data from the sketches (i.e., before

the join), which assumes that the mean does not change signi�cantly after the join.

While this assumption may not always hold, it is a required assumption because we do

not have access to the necessary data to compute the after-join mean at indexing time

(as it depends on the query table). A shift in the mean after the join may cause some

terms that belong in the same quadrant to not match. However, this a�ects tables with

high and low correlations equally. Moreover, by using correlation estimates computed

using the sketches, we can correct possible errors in a reranking phase. In practice, our

116

Figure 6.3: An example of mean centering for two tables TC and TQ. Letters represent
join keys k and the positions along the lines represent values ck. Yellow circles ()
mean that the keys do not join. Green circles () denote that the keys join and are
located in “positive quadrants” (I and III), and Dark blue circles () mean that the rows
join and are in “negative quadrants” (II and IV). A projection of the table generated
after the join onto the plane is shown in Figure 6.2.

experimental evaluation (Section 6.3) shows that this approach works well and attains

high recall values.

In summary, to index a table TC we �rst compute its sketch SC and then use

Equation 6.3 to compute terms TC , which are ultimately used to represent the table TC

in the QCR inverted index.

6.2.4 Querying the QCR Index

When a table TQ is provided as a query, we apply a process similar to the one

described in Section 6.2.3 to query the inverted index. We start by constructing a

sketch SQ and then generate terms to query the index. Note that querying the index

using terms TQ returns only positive correlations (r > 0). To see this, consider the

mean-centered example of C and Q at the bottom of Figure 6.3. If a user queries the

index using the terms TC generated for TC , a comparison with terms TQ would only

match the hashes for the (green) join keys a, b, c, d, e, and f, which have the same

join keys and are on the same side (positive/negative) of the mean-centered line. The

117
points of a negatively correlated column (r < 0) projected onto the plane would lie

mostly on quadrants II and IV, the opposite of our query terms TQ.

If one is also interested in retrieving negative correlations, an additional step is

therefore necessary. In this case, we generate two sets of terms: T+
Q
is used to retrieve

positive correlations, and T�
Q
, retrieves negative correlations. We set T+

Q
to be equal to

TQ, and we compute T�
Q
using the additive inverse of numerical values {qk} 2 SQ — i.e.,

we apply a transformation to {qk} that multiplies all of its elements by �1. We show

in our theoretical analysis (Section 6.2.6) that the size of the overlaps s+ = |T+
Q
\ TC |

and s� = |T�
Q
\ TC | are roughly proportional to N

+

N\ and N
�

N\ , respectively, within some

error bounds. Therefore, to retrieve positively and negatively correlated tables, we can

issue a disjunction of two queries — one for each set of terms — and keep the top-k

tables with highest scores of either s+ or s�. In other words, we �nd the top-k tables

that maximize the score s = max(s+, s�).

6.2.5 Implementation Details

We implemented our algorithms in Java, and we used the Apache Lucene library [2]

to build the indexes and queries. We construct two queries of type BooleanQuery,

one for T�
Q
and another for T+

Q
. They are then combined in a single Disjunction-

MaxQuery [111], which picks the top-k tables with maximum value of either T�
Q

or T+
Q
. This allows both queries to be e�ciently processed together using Lucene’s

implementation of the Block-Max WAND algorithm [60].

118
6.2.6 Theoretical Analysis

We provide a theoretical analysis to justify our heuristic and clarify the assumptions

behind it. We analyze the s+ and s� scores and show that the estimator s+/n provides

a reasonable estimate for N+/N\. More formally, we show that:

Lemma 2. The following bounds hold for a score s+ computed using the QCR hashing

scheme and a sketch of size n:

N+

N\ ⇢  E

s+

n

�
 2

N+

N\ ⇢ (6.4)

where ⇢ = N
\

N[is the Jaccard similarity between KQ and KC .

To compare QCR with the indexing approach from Chapter 4, which only uses CSK

sketches, we also extend our analysis to the scores produced by the CSKmethod (as both

scores are counts of hash collisions). Before presenting our analysis, we describe CSK.

The CSK indexing scheme. While the QCR approach uses the set of hashes computed

using Equation 6.3, CSK uses hashes derived only from the join keys. More speci�cally,

it recommends constructing correlation sketches for candidate tables, and then indexing

them using their set of hashed keys TC = {h(k) 2 SC}. At query time, it constructs

a sketch SQ for the query table, which is used to create the query term set TQ =

{h(k) 2 SQ}. The queries �nd the top-k tables with the highest overlap of hashed keys

s\ = |TQ \ TC |. This step retrieves highly joinable tables. The �nal step re-ranks the

retrieved tables using the correlation estimate obtained using the complete sketches SQ

and SC , which then places correlated tables at the top of the ranked list. This indexing

approach based on the hashed keys of CSK sketches was already presented informally

in Chapter 4. In what follows, we present a more detailed analysis of s\, and compare

it with the score s+ derived from QCR terms.

119
Proof of Lemma 2. Let SA and SB be the sketches computed for the tables TA and TB ,

respectively. Moreover, let U = {ki : h(ki) 2 SA [SB} = {k1, k2, ..., kn, ..., k|SA[SB |}

where i denotes the index of ki in the order induced by the hashing function h. Let

also TA and TB denote the set of hashes computed using either the QCR or the CSK

strategies from SA and SB , respectively. Finally, T = {t1, ..., t|SA[SB |} denotes the set

of hashes computed for each ki. We can now de�ne a collection of Bernoulli random

variables that represent hash collisions between TA and TB :

ui =

8
>><

>>:

1 if ti 2 TA \ TB

0 otherwise.

Wewill �rst analyze the expected value of each ui independently. Then, we will calculate

the sum s =
P|SA[SB |

i=1 ui and analyze its expected value E[s]. For convenience, we will

also denote s(a, b) =
P

b

i=a
ui.

Both scores s+ and s\ are summations as in s, with their only di�erence being their

probability of collisions. Note that ti 2 TA \ TB if and only if the keys used to compute

the hashes collide in their original sets and if the hashes are selected for inclusion in

both sketches. For instance, in CSK the strategy, ti 2 TA \ TB i� ki 2 KA \KB and

ki 2 SA and ki 2 SB .

The probabilities of the keys being included in the sketches (i.e.,P{ki 2 SA and ki 2

SB}) depend on the sketch size n and are not uniform for the set of all i’s. In fact, as

proven in [16], P{ki 2 SA and ki 2 SB} = 1 for all i  n when sketches have size

n, given that P{ki 2 SA} = 1 and P{ki 2 SB} = 1. Thus, we divide the analysis in

two cases: {u1, ..., un} and {un+1, ..., u|SA[SB |}. First, note that s can be decomposed

into the sum of the parts: s = s(1, n) + s(n+ 1, |SA [SB|). Then, due to linearity of

120
expectation, we have that:

E[s] = E[s(1, n) + s(n+ 1, |SA [SB|)]

= E[s(1, n)] + E[s(n+ 1, |SA [SB|)]

= E
"

nX

i=1

ui

#
+ E

2

4
|SA[SB |X

i=n+1

ui

3

5

=
nX

i=1

E[ui] +
|SA[SB |X

i=n+1

E[ui]

Each ui is a Bernoulli random variable, thus we know that E[ui] = P{ui = 1}. Let I

denote the event that ki is included in both sketches and C denote the event that a hash

collision happens. Then, we have that: P{ui = 1} = P{I | C} · P{C}. Using the facts

that the probability of inclusion is 1 for i  n and P{C} is constant for all i, we get:

E[s(1, n)] =
nX

i=1

P{I | C} · P{C}

=
nX

i=1

1 · P{C}

= nP{C} (6.5)

For the remaining i 2 {n + 1, |SA [SB|}, we use the the fact that P{I|C} can be at

most 1 to get the upper bound:

E[s(n+ 1, |SA [SB|)] =
|SA[SB |X

i=n+1

P{I | C} · P{C}


|SA[SB |X

i=n+1

1 · P{C}

 nP{C} (6.6)

121
Combining Equations 6.5 and 6.6, we get that:

nP{C}  E[s]  nP{C}+ nP{C}

nP{C}  E[s]  2nP{C} (6.7)

P{C}  E
h s
n

i
 2P{C} (6.8)

The �nal step is to obtain the collision probabilities for each hashing scheme. For

CSK, we have that P{C} = N
\

N[and whereas for QCR, P{C} = N
+

N[. Combining these

with Equation 6.8, we obtain the following bounds:

N\

N[ E

s\

n

�
 2

N\

N[for CSK, and (6.9)

N+

N[ E

s+

n

�
 2

N+

N[for QCR. (6.10)

To get the results from Lemma 2, note that the following equality holds: N
+

N[= N
+

N\
N

\

N[.

6.2.7 Discussion

As shown earlier, using a QCR index is su�cient to retrieve correlated columns

in a single step. In contrast to CSK, which retrieves tables that roughly maximize the

Jaccard similarity (Equation 6.9), our QCR maximizes both the Jaccard similarity and

the ratio N
+

N\ . Therefore, our method is a heuristic that uses the Jaccard similarity as a

proxy to Jaccard containment.

Note, however, that our hashing scheme is complementary to the sketches proposed

in (Chapter 4) and they can be used in a cascading fashion: one can �rst retrieve tables

122
using the QCR index, as described in Section 6.2.3, and then pass the retrieved candidates

to another layer that re-ranks the candidate tables using estimates produced by CSK

sketches (Chapter 4). At this re-ranking stage, one can estimate any correlation measure

(e.g., Pearson’s, Spearman’s, and others) and the Jaccard Containment. Therefore, the

re-ranking can optimize any weight combination as discussed in our De�nition 5.

In addition to re-ranking using direct correlation estimates computed from sketches,

additional information stored at indexing time can be used to further improve the

ranking. For instance, scoring functions that take into account the risk of estimation

error could be used to avoid placing false positives at the top of the ranked list (as done

in Section 4.3.1). Note, however, that these improvements are only applicable to the

re-ranking phase (i.e., they are orthogonal to the approach and experimental results we

present in this chapter), and while they may improve �nal ranking, they cannot impact

the retrieval recall (which is one to the main bene�ts of QCR indexes).

In our experiments (Section 6.3), we consider both the single-stage approach as

well as the cascading approach. We show that QCR indexes improve both the ranking

accuracy and recall compared to the CSK approach. Moreover, we show that the QCR-

based hashing works well for retrieving candidate correlated tables according to a

di�erent correlation estimator such as Pearson’s.

6.3 Experimental Evaluation

6.3.1 Experimental Setup

Dataset Collections. Our evaluation uses one synthetic and one real-world collection.

Each of them is composed of two distinct sets of tables which we refer to as query set

and corpus set. We describe these collections in more detail below.

123
(1) Synthetic Table Corpus (STC). In order to have more control of the data properties,

we automatically generated a corpus containing tables with varying degrees of join-

ability and correlation. Our corpus generation method proceeds as follows. We �rst

generate 1,000 table queries by generating unique keys and drawing numbers from a

Gaussian distribution with parameters N (0, 1). Next, for each query, we synthetically

generate 100 candidate tables with high correlation and 400 with low correlation with

varying levels of Jaccard containment between their keys and the keys of the query

table. Speci�cally, we draw the correlation level r, uniformly at random, from the

the range [1.0, 0.25] or [�1.0,�0.25] for high-correlation tables, and from the range

(0.25,�0.25) for low-correlation tables. The Jaccard Containment is drawn from ran-

dom and uniformly from [0.1, 1.0]. The �nal table collection includes 1,000 queries and

500,000 candidate tables, totaling approximately 250 GB of storage.

(2) NYC Open Data (NYC). The tables from this dataset contain data published by New

York City agencies and their partners [121]. We used a snapshot that included 1,505 dif-

ferent CSV �les with a varying number of columns. From each �le, we generated 289,487

two-column tables (i.e., hKC , Ci) by extracting all pairs of categorical and numerical

data columns from each �le. A brute-force approach to estimate join-correlations

between all pairs of these tables would require over 41 billion join and correlation com-

putations. To generate a query set, we randomly selected 1,000 tables. The remaining

tables are assigned to the corpus set.

EvaluationMetrics. Ideally, table retrieval approaches should be able to �nd the largest

number possible of correlated tables and, at the same time, place highly correlated and

highly joinable tables at the top of the list. To measure di�erent aspects of retrieval

quality, we use the following evaluation metrics:

(1) Normalized Cumulative Gain (nDCG) [97]: measures the ability to place highly

124
relevant items at the top of the ranking. As a relevance measure, we use the actual

absolute Pearson’s correlation (|r|) between the numerical columns of the query and

the candidate tables after a full table join. Therefore, nDCG values assess the retrieval

quality with respect to the correlation-only objective (↵r = 1 and ↵j = 0). We report the

nDGC at positions 5, 10, and 50 of the ranked list (referred to as nDCG@5, nDCG@10,

nDCG@50, respectively).

(2) Recall: measures the percentage of relevant tables retrieved relative to the total of

relevant tables. Recall is also computed with respect to correlation |r| only (i.e., ↵j = 0,

↵r = 1)). We report the recall considering di�erent correlation levels as relevant:

|r| > 0.25, |r| > 0.50, and |r| > 0.75. In order to compute the recall, we pooled all

retrieved candidate tables by merging the lists associated with all retrieval strategies,

and then reported the fraction of relevant tables retrieved by each speci�c retrieval

strategy compared to all pooled tables.

(3) Average Jaccard Containment (Avg. JC) Similarity: to measure the ability to prioritize

highly joinable tables, we report the average JC similarity at di�erent positions of the

ranked list (i.e., ↵j = 1, ↵r = 0). The JC similarity is computed over the join keys of

the complete tables, i.e., JC(KQ, KC) = |KQ \KC |/|KQ|, whereKQ andKC are the

sets of join keys of the original tables TQ and TC respectively. We report the average JC

at positions 5, 10, and 50.

(4) Average Weighted Means (AAM, AGM, AHM): To evaluate queries with respect to

weight preferences (De�nition 5), we compute the weight w for the candidate table at

each position in the ranked list, and then calculate the average from the �rst position up

to a maximum position i. We use as combination functions the arithmetic, geometric,

and harmonic means (denoted as AAM@i, AGM@i, and AHM@i, respectively).

(5) Harmonic Mean (HM): We also use the harmonic mean to evaluate how good each

125
retrieval method is with respect to multiple metrics. The HM is de�ned as HM(a, b) =

2ab
a+b

, where a and b are scores for two di�erent evaluation metrics (e.g., nDCG, Recall,

or Avg. JC).

All these metrics are in the interval [0, 1], and larger values are preferred over

smaller values. We use the HM to combine metrics because it is intuitive and equivalent

to the well-known F1-score, which also uses the HM to quantify the trade-o�s between

precision and recall in binary classi�cation tasks. When compared to the arithmetic

(AM) and the geometric (GM) means, the HM is strictly smaller. This means that HM

scores are “harsher” than if we were using the GM to evaluate an equal-weight linear

combination of Avg. JC and nDCG.

Baselines and Parameter Settings. We compare our approach against the CSK

approach from [136] under multiple parameter settings. As discussed in Section 6.2.6,

this type of index can yield two baselines: the �rst, which retrieves and ranks tables

according to the score s\ (referred to as CSK-Overlap), roughly optimizes for �nding

tables with high joinability (↵r = 0, ↵j = 1); the second, which ranks retrieved tables

using sketch estimates (referred to as CSK-Correlation), optimizes the �nal ranking for

correlations (↵r = 1, ↵j = 0).

Similarly, we consider two possible ranking strategies for our QCR indexes: ranking

tables based on the overlap of the QCR keys (namely, QCR-Overlap), which simultane-

ously prioritizes joinability and correlations (↵r = 1, ↵j = 1); and a second strategy

that re-ranks the retrieved tables using estimates, computed using the sketches (namely,

QCR-Correlation). While QCR-Correlation roughly optimizes for both correlation and

joinability in the �rst step, the re-ranking step optimizes for correlation (↵r = 1,

↵j = 0).

126
Note that the re-ranking strategies (CSK-Correlation and QCR-Correlation) incur a

small additional computational overhead, as they need to load the sketches from the

storage, compute estimates, and then re-order the table candidates using the Pearson’s

correlation estimates. They also require an additional storage overhead for storing

the sketches. For a collection with d documents and sketches of size n, they need

d ⇤ n ⇤ (sizeof(h(k)) + sizeof(c)) bytes in addition to storage required for the

inverted index.

Besides the aforementioned index types and ranking strategies, we also evaluate the

e�ect of various parameters such as sketch size (the larger the sketch size, the larger

the amount of storage space needed and the larger the index size), and the number of

candidate tables retrieved (top-k). These parameters are applicable to both QCR and

CSK indexes.

6.3.2 Retrieval of Highly Correlated Tables

Our �rst experiment focuses on retrieval quality with respect to correlations (↵r = 1,

↵j = 0) (same as in [136]). We built an inverted index for several combinations of index

parameter settings and data collections, and then used all tables in the query sets to

issue queries against the index. We report the evaluation metric scores for the NYC and

STC collections in Tables 6.1 and 6.2 respectively.

6.3.2.1 Ranking Accuracy

The results show that our QCR-based methods signi�cantly improve over the base-

line methods. The top performing method, QCR-Correlation, substantially increases

ranking quality in terms of nDCG scores across all possible parameter settings, with par-

ticularly good results at the top-5. We note also that the QCR-Overlap method achieves

127
Table 6.1: Ranking scores for di�erent index and ranking parameters on the NYC Open
Data (NYC) collection.

Parameters nDCG Recall Harmonic Mean (nDCG, Recall)

n top-k index ranking @5 @10 @50 r > .25 r > .50 r > .75
r > .5

@10

r > .5

@50

r > .75

@10

r > .75

@50

256

50

CSK
Overlap 0.386 0.401 0.474 0.378 0.357 0.353 0.330 0.368 0.308 0.344

Correlation 0.766 0.734 0.582 0.378 0.357 0.353 0.412 0.400 0.388 0.375

QCR
Overlap 0.754 0.732 0.743 0.487 0.590 0.672 0.630 0.637 0.680 0.686

Correlation 0.853 0.845 0.780 0.487 0.590 0.672 0.663 0.649 0.714 0.697

100

CSK
Overlap 0.386 0.401 0.474 0.606 0.540 0.496 0.422 0.476 0.385 0.433

Correlation 0.794 0.776 0.724 0.606 0.540 0.496 0.568 0.573 0.509 0.516

QCR
Overlap 0.754 0.732 0.743 0.769 0.851 0.897 0.781 0.788 0.805 0.812

Correlation 0.851 0.853 0.865 0.769 0.851 0.897 0.837 0.850 0.855 0.870

512

50

CSK
Overlap 0.380 0.397 0.472 0.378 0.357 0.353 0.326 0.367 0.305 0.343

Correlation 0.776 0.743 0.585 0.378 0.357 0.353 0.413 0.400 0.390 0.375

QCR
Overlap 0.759 0.737 0.747 0.488 0.596 0.678 0.636 0.642 0.685 0.691

Correlation 0.866 0.858 0.787 0.488 0.596 0.678 0.671 0.655 0.723 0.704

100

CSK
Overlap 0.380 0.397 0.472 0.603 0.542 0.493 0.417 0.475 0.379 0.430

Correlation 0.808 0.790 0.732 0.603 0.542 0.493 0.573 0.575 0.510 0.515

QCR
Overlap 0.759 0.737 0.747 0.770 0.862 0.905 0.788 0.795 0.810 0.817

Correlation 0.868 0.870 0.876 0.770 0.862 0.905 0.849 0.860 0.866 0.879

1024

50

CSK
Overlap 0.381 0.397 0.472 0.380 0.356 0.354 0.326 0.366 0.306 0.343

Correlation 0.781 0.749 0.586 0.380 0.356 0.354 0.413 0.399 0.392 0.376

QCR
Overlap 0.763 0.742 0.749 0.490 0.594 0.680 0.637 0.642 0.689 0.694

Correlation 0.870 0.860 0.788 0.490 0.594 0.680 0.670 0.654 0.723 0.706

100

CSK
Overlap 0.381 0.397 0.472 0.603 0.540 0.496 0.416 0.473 0.379 0.430

Correlation 0.815 0.797 0.736 0.603 0.540 0.496 0.571 0.573 0.513 0.517

QCR
Overlap 0.763 0.742 0.749 0.772 0.863 0.909 0.791 0.797 0.813 0.820

Correlation 0.873 0.874 0.879 0.772 0.863 0.909 0.852 0.862 0.870 0.883

nDCG scores that are very close to the best-performing approach (QCR-Correlation),

suggesting that our indexing and retrieval approach provides scores that are well-

correlated with the Pearson’s correlation, even though the QCR estimator is only a

crude estimator of this coe�cient.

The improvements of QCR-Correlation over CSK-Correlation are due to the base

QCR retrieval strategy, which makes more correlated tables available to the re-ranking

128
Table 6.2: Ranking scores for di�erent index and ranking parameters on the Synthetic
Table Corpus (STC) collection.

Parameters nDCG Recall Harmonic Mean (nDCG, Recall)

n top-k index ranking @5 @10 @50 r > 0.25 r > 0.50 r > 0.75
r > .50

@10

r > .50

@50

r > .75

@10

r > .75

@50

256

50

CSK
Overlap 0.133 0.137 0.196 0.234 0.208 0.188 0.149 0.199 0.138 0.184

Correlation 0.839 0.708 0.373 0.234 0.208 0.188 0.319 0.265 0.290 0.242

QCR
Overlap 0.921 0.900 0.815 0.747 0.788 0.822 0.839 0.801 0.857 0.817

Correlation 0.994 0.987 0.847 0.747 0.788 0.822 0.875 0.816 0.895 0.833

100

CSK
Overlap 0.133 0.137 0.196 0.471 0.420 0.379 0.190 0.263 0.182 0.252

Correlation 0.936 0.887 0.582 0.471 0.420 0.379 0.567 0.486 0.523 0.453

QCR
Overlap 0.921 0.900 0.815 0.931 0.941 0.951 0.919 0.873 0.924 0.877

Correlation 0.998 0.996 0.957 0.931 0.941 0.951 0.967 0.949 0.972 0.954

512

50

CSK
Overlap 0.133 0.140 0.197 0.235 0.208 0.188 0.151 0.200 0.140 0.184

Correlation 0.840 0.709 0.374 0.235 0.208 0.188 0.319 0.265 0.290 0.242

QCR
Overlap 0.925 0.903 0.835 0.776 0.814 0.842 0.854 0.823 0.869 0.837

Correlation 0.995 0.989 0.865 0.776 0.814 0.842 0.891 0.838 0.907 0.852

100

CSK
Overlap 0.133 0.140 0.197 0.470 0.419 0.377 0.193 0.264 0.186 0.252

Correlation 0.936 0.887 0.582 0.470 0.419 0.377 0.566 0.486 0.521 0.452

QCR
Overlap 0.925 0.903 0.835 0.957 0.964 0.969 0.932 0.894 0.935 0.896

Correlation 0.999 0.998 0.973 0.957 0.964 0.969 0.980 0.969 0.983 0.971

1024

50

CSK
Overlap 0.135 0.141 0.197 0.235 0.209 0.188 0.152 0.201 0.140 0.185

Correlation 0.841 0.710 0.374 0.235 0.209 0.188 0.320 0.266 0.290 0.242

QCR
Overlap 0.927 0.906 0.849 0.798 0.832 0.860 0.866 0.840 0.881 0.853

Correlation 0.995 0.991 0.879 0.798 0.832 0.860 0.903 0.854 0.919 0.868

100

CSK
Overlap 0.135 0.141 0.197 0.471 0.420 0.377 0.194 0.264 0.186 0.253

Correlation 0.936 0.888 0.583 0.471 0.420 0.377 0.567 0.487 0.522 0.452

QCR
Overlap 0.927 0.906 0.849 0.976 0.981 0.986 0.942 0.910 0.944 0.912

Correlation 0.999 0.999 0.985 0.976 0.981 0.986 0.990 0.983 0.992 0.985

strategy, allowing the re-ranking phase to place more relevant tables at the top of the

ranked list. In addition, because the QCR index tends to return items that are highly

joinable (as shown in Section 6.3.3), the accuracy of the correlation estimates produced

by the sketches might also signi�cantly improve: the more joinable the sketches, the

larger the sample size for correlation estimation.

129
Note also that while it may seem that the gap between CSK and QCR is not very

large for top-5 results, CSK is expected to lead to the discovery of correlated tables

only eventually. The event of �nding a correlated columns when optimizing for JC is

close to random [136]. Thus, the probability of such events is highly dependent on the

distribution of the number of correlated tables in the collection. In large collections

with very few correlated tables, it will be much harder to �nd correlated tables using

CSK index than in smaller collections.

For instance, notice the big change in recall between the STC and NYC collections,

which have di�erent underlying generating processes. In the STC collection which has

approximately 100 tables with r > 0.25 and 400 tables with r < 0.25 for each query,

QCR is able to retrieve twice as many tables as CSK (recall of 93.1% compared to 47.1%,

respectively) for k = 100 and n = 256. For smaller k = 50, the di�erence is more than

3 times larger (74.7% compared to 23.4%).

6.3.2.2 Recall

The results also show that QCR indexes dramatically improve the recall of correlated

columns. A particularly interesting trend is that, while retrieving columns by overlap

of correlation sketch keys (CSK-Overlap and CSK-Correlation), the recall progressively

decreases as we increase the correlation level. The opposite happens for the QCR index:

the recall becomes better for higher correlation levels. This con�rms that QCR indexes

are particularly good at retrieving highly-correlated tables (r > 0.75).

Another interesting result is that retrieving a longer list of candidate tables yields bet-

ter results than increasing the sketch sizes. We can see this, for instance, by comparing

the Recall scores obtained by the QCR index in the NYC collection: retrieving the top-100

tables using a sketch size of n = 256 leads to scores in the range [0.769, 0.897], while

130
retrieving top-50 tables with n = 1024 only leads to scores in the range [0.490, 0.680].

Note that this is a two-fold increase in the top-k compared to a four-fold increase in the

sketch size n. This suggests that increasing the number top-k retrieved tables has a higher

impact on recall than increasing the sketch size n. As we will show in our e�ciency

evaluation, this is particularly good because an increase in the sketch size results in a

larger number of query terms, which has a bigger impact on query processing times

than increasing the number of top-k results.

The results also indicate that QCR indexes are more space-e�cient than CSK indexes:

a comparison of di�erent sketch sizes (n = 256 vs. n = 1024) for the same number of

top-k tables (top-k=100) shows that QCR attains better recall with smaller sketches.

For example, the best recall for r > 0.75 attained by CSK is 0.496 (with the settings

n = 1024 and k = 100), whereas QCR is able to attain a higher recall of 0.897 (with

n = 256 and k = 100). This suggests that QCR indexes need less than 1/4 of the storage

size needed by CSK indexes (due to smaller sketches) to achieve the same recall.

6.3.2.3 Overall Ranking

Besides nDCG and Recall, we also report the harmonic mean of nDCG and Recall

scores for di�erent ranked list positions and correlation levels in Tables 6.1 and 6.2.

These results, along with results from Sections 6.3.2.1 and 6.3.2.2, con�rm that the

QCR-based retrieval strategies are able to achieve a better overall ranking quality using

smaller sketch sizes.

6.3.3 Balanced Retrieval of Correlated & Joinable Tables

So far, we discussed ranking quality in terms of accuracy and recall. We now consider

the ability of our QCR index to place tables that are simultaneously highly correlated

131
Table 6.3: Average weighted means at di�erent rank positions for di�erent parameters
on the NYC Open Data (NYC) collection.

n top-k index ranking AAM@5 AAM@10 AAM@k AGM@5 AGM@10 AGM@k AHM@5 AHM@10 AHM@k

512

50

CSK
Overlap 0.185 0.181 0.159 0.093 0.090 0.075 0.069 0.066 0.053

Correlation 0.296 0.266 0.159 0.135 0.123 0.075 0.099 0.089 0.053

QCR
Overlap 0.306 0.280 0.226 0.139 0.125 0.094 0.101 0.089 0.063

Correlation 0.326 0.306 0.226 0.140 0.130 0.094 0.099 0.091 0.063

100

CSK
Overlap 0.185 0.181 0.146 0.093 0.090 0.066 0.069 0.066 0.045

Correlation 0.301 0.276 0.146 0.129 0.119 0.066 0.091 0.084 0.045

QCR
Overlap 0.306 0.280 0.201 0.139 0.125 0.081 0.101 0.089 0.052

Correlation 0.320 0.303 0.201 0.128 0.121 0.081 0.087 0.082 0.052

and joinable at the top of the ranked list. For this evaluation, we use as w the weighted

mean of the Jaccard Containment (j) and the absolute Pearson’s correlation (r). We

compute w for the candidate table at each position in the ranked list and then calculate

the average from the �rst position up to a maximum position i. We denote the arithmetic,

geometric, and harmonic means as AAM@i, AGM@i, and AHM@i, respectively. The

absence of @i means that the average is over all top-k retrieved tables. The results are

reported in Table 6.3 (we only show n = 512 because other settings are similar). They

con�rm that QCR indexes lead to better performance than CSK indexes, specially when

the size of the ranked list grows. Also, the correlation sketch estimates improve the

performance regardless of the index, but the best results are achieved when QCR index

is used because it makes more correlated tables available for the re-ranking step.

We also computed the Average Jaccard Containment (Avg. JC) attained at di�erent

positions of the ranked list, as well as the harmonic mean between the Avg. JC and

nDCG. The results are reported in Tables 6.4 and 6.5 (we also include nDCG values for

an easier comparison). We only report scores for sketch size n = 512 and for queries

that retrieve the top-100 candidate tables. However, other settings led to similar results.

132
Table 6.4: Avg. JC scores on the STC table collection.

nDCG Avg. JC HM(nDCG, Avg. JC)

@5 @50 @5 @50 @5 @50

CSK-Overlap 0.133 0.197 0.994 0.954 0.215 0.322

CSK-Correlation 0.936 0.582 0.908 0.908 0.921 0.707

QCR-Overlap 0.925 0.835 0.925 0.882 0.924 0.857

QCR-Correlation 0.999 0.973 0.749 0.827 0.854 0.894

Table 6.5: Avg. JC scores on the NYC table collection.

nDCG Avg. JC HM(nDCG, Avg. JC)

@5 @50 @5 @50 @5 @50

CSK-Overlap 0.303 0.374 0.223 0.190 0.173 0.185

CSK-Correlation 0.622 0.570 0.180 0.175 0.216 0.209

QCR-Overlap 0.582 0.570 0.218 0.185 0.239 0.213

QCR-Correlation 0.658 0.666 0.170 0.168 0.208 0.210

As expected, the CSK-Overlap strategy is the best performing in terms of Avg. JC

in both table collections. Moreover, while the QCR-Correlation is the best strategy

in terms of nDCG, its Avg. JC is considerably lower than other methods. This is not

surprising as this strategy only uses the correlation estimate in the re-ranking stage.

In contrast, QCR-Overlap is able to maintain a good balance between correlation and

joinability: its Avg. JC scores are not too far below when compared to the CSK-Overlap

strategy, nor are its nDCG scores. As a result, QCR-Overlap is able to obtain the best

balance between the two metrics as con�rmed by their harmonic mean.

Note also the di�erence between the overall Average JC scores for di�erent table

collections: Avg. JC tends to be higher for the synthetic collection (STC) compared

to smaller values in the NYC collection. This di�erence is due to the underlying data

generation process of the collections. In the STC collection, we generate the tables in

such a way that there are always joinable candidates for every query. In contrast, in

133
Table 6.6: Running time for di�erent parameter settings along with their ranking scores
on the NYC collection.

nDCG/Rec nDCG/JC Time

index ranking top-k n @10, r > 0.75 @10 Avg.

1 QCR Correlation 100 1024 0.870 0.136 28.554

2 QCR Correlation 100 512 0.866 0.132 19.704

3 QCR Correlation 100 256 0.855 0.127 13.944

4 QCR Overlap 100 1024 0.813 0.155 27.763

5 QCR Overlap 100 512 0.810 0.153 19.492

6 QCR Overlap 100 256 0.805 0.151 13.568

7 QCR Correlation 50 512 0.723 0.148 18.431

8 QCR Correlation 50 1024 0.723 0.150 26.963

9 QCR Correlation 50 256 0.714 0.144 12.940

10 QCR Overlap 50 1024 0.689 0.155 26.689

11 QCR Overlap 50 512 0.685 0.153 18.102

12 QCR Overlap 50 256 0.680 0.151 12.721

13 CSK Correlation 100 1024 0.513 0.139 17.033

14 CSK Correlation 100 512 0.510 0.136 12.488

15 CSK Correlation 100 256 0.509 0.131 9.837

16 CSK Correlation 50 1024 0.392 0.148 14.132

17 CSK Correlation 50 512 0.390 0.146 10.700

18 CSK Correlation 50 256 0.388 0.143 8.655

the NYC collection, where we select query tables randomly from the data, we notice

a signi�cant skew in the distribution of JC for the retrieved tables, with some query

tables having few joinable columns. Nonetheless, we can see that the general trends in

the results are still the same, with QCR-Overlap attaining the best scores in terms of

HM(nDCG, Avg. JC).

6.3.4 Runtime Performance

To evaluate performance, we executed all queries in the query set and measured

their total execution time, including the time to create sketches (and terms T+
Q

and

134
T�
Q
) for the query table, processing the query, reading the candidate tables’ sketches

and re-ranking the results based on sketch correlation estimates (when applicable).

Given that Lucene’s implementation makes heavy use of caching and memory mapping

mechanisms to speed up query execution, we ran all queries 5 times and discarded the

�rst execution. We omit query times for the synthetic collection. While their query

times are higher due to their query distribution size, we observed similar results.

In Table 6.6, we report the average query time for all queries in the NYC collection

along with the ranking metric scores obtained by the same parameter settings. Results

are sorted by the harmonic mean between nDCG@10 and Recall at r > 0.75, in

decreasing order, to make it easier to �nd the running time of the best-performing

settings. In general, we can see that the higher the sketch size n and the number of

retrieved candidates, the higher the running time. Moreover, we can see that, for a �xed

top-k and sketch size n, the query times for QCR methods are roughly twice as high as

for their CSK counterparts. This is not surprising, since QCR queries need to process

twice as many terms (in order to retrieve positive and negative correlations) as CSK

queries. Another interesting result is that even the settings of the QCR methods that

use the smallest sketch sizes, which are as good as the best CSK methods, have running

times that are either lower or comparable to the best CSK approaches. This suggests

that QCR strategies are more e�cient than CSK’s for a �xed retrieval quality level.

To better visualize the trends in these results, consider the plot in Figure 6.4. In this

plot, the best methods are the ones located closer to the top-left corner, i.e., the region

of better metric scores (top) and lower running time (left). Here, it is easy to see that

increasing the number of retrieved candidate tables from 50 (#) to 100 (⇤) signi�cantly

improves retrieval quality, at only a small runtime cost. Conversely, increasing the

sketch size incurs a signi�cant runtime penalty. This suggests that in order to improve

135

Figure 6.4: Runtime versus retrieval quality scores for di�erent parameter settings.

the results, it is more resource-e�cient to increase the length of the retrieved list than

the sketch size.

136

Chapter 7

Applications to Machine Learning

Model Improvement

In this chapter, we present two use cases that demonstrate the application of our

methods for discovering useful ML model features e�ciently. The �rst use case (Sec-

tion 7.1) shows an application of indexing and querying large data lakes for the discovery

of features across many di�erent tables for improving machine learning models. In the

second use case (Section 7.2), we illustrate an application to real-world biomedical data

of searching ML features in wide tables (i.e., tables with a large number of columns) for

predicting gene mutations relevant to cancer prognosis.

7.1 Feature Discovery on Large Data Lakes
In this use case, we evaluate di�erent techniques introduced in this dissertation

in the task of feature discovery for improving the performance of machine learning

models. To do so, we use the YADL datalake [30], which has been speci�cally designed

for benchmarking this task. YADL is based on the YAGO knowledge base [112] and

137
provides a controlled environment for testing di�erent methods. For this experiment,

we use the YADL Wordnet data lake, which contains 32,103 tables with an average

of 287,134.33 rows per table [30]. As machine learning problems, we considered the

following three regression tasks that are included in YADL: (1) Company Employees:

predict the number of employees in a company; (2) US Elections: predict the fraction of

votes by party in each US county during the 2020 elections; (3) US Accidents: predict

the number of accidents by US county in the year 2019.

We start the experiments with versions of these tables that only contain the target

and join key columns, i.e., all features used to train the model are discovered from the

data lake. As indexing methods, we use both indexes based on CSK sketches join key

values as well as QCR index terms (see Chapter 6). For simplicity, we only indexed

features with numerical data, used the PM1 bootstrap estimator for Pearson’s correlation,

and used the aggregate function FIRST, which only stores the �rst element seen of

each repeated join key (but it would be useful to evaluate the impact of other variables

such as di�erent data types, and aggregate functions, and correlation/MI estimators

in future work). To discover features, we issue queries against an index to retrieve the

top 500 columns, which are then used to generate the �nal ranking using one of the

following ranking approaches:

• KEY: This approach uses original scores computed during the set overlap search

phase. For CSK indexes, this means the overlap between the join keys; for QCR

indexes, this means the overlap between QCR index terms, which maximizes both

correlation and joinability jointly (see Section 6 for details);

• BAL: This approach is a "balanced" approach that prioritizes equally correlation

and joinability by reranking the retrieved features using the formula j ⇤ r where

j is the Jaccard containment estimate computed using the k-minimum values

138
included in the correlation sketch and r is the correlation estimate computed

using a correlation estimator applied over the sketch join.

• GRD: This approach is a simple heuristic ranking diversi�cation method that uses

a greedy algorithm to reorder [140] the ranking taking into account the features

that were selected previously. The goal is to place strongly correlated features at

the top of the ranking while avoiding redundancy, i.e., avoiding features that are

correlated with features that have been previously selected.

Finally, we train regression models using the CatBoost library [33] over a varying

number of the top-ranked features discovered using each method. To evaluate model

quality, we use standard random train-test splits and the MSE and R-squared metrics.

Figures 7.1 and 7.2 show the MSE and R-squared scores, respectively, attained by

each combination of index and ranking methods. The results show that methods that

combine the QCR or CSK indexes, along with the greedy diversi�cation (GRD) approach

often lead to the best results. This happens because, given that the YADL Wordnet

data lake contains a small number of highly joinable tables, both of these indexing

techniques can retrieve the best features in the initial retrieval phase.

We also note that the basic BAL approach usually does not place the best features in

the top 5-10 positions because of the large amount of duplication in the YADL data lake.

With BAL ranking, a highly correlated feature is usually followed by other features that

are similar to the previously selected features. While they could be relevant in isolation,

the presence of similar features earlier in the ranking makes them redundant. As seen

in the plots, this issue is easily solved by a diversi�cation approach that looks ahead for

less redundant features in the ranked list.

139

Figure 7.1: Mean Squared Error achieved by each combination of retrieval and ranking
methods in di�erent ML problems.

140

Figure 7.2: R-Squared scores achieved by each combination of retrieval and ranking
methods in di�erent ML problems.

141
7.2 E�cient Feature Ranking on Wide Tables

Even though not designed with this exact scenario in mind, here we show that a QCR

index may also be useful in ranking features in wide tables. In this experiment, we aim

to reproduce one of the results from Dou et al. [65], where the researchers built models

that can predict gene mutations relevant to the prognosis of endometrial cancer. In this

problem, the researchers already know the tables that contain the relevant features,

however, there are over 10,000 di�erent columns to search from.

Mutations in the CTNNB1 gene are associatedwith the risk of cancer recurrence [118,

104], and therefore useful for making treatment decisions. Gene sequencing is currently

used to identify these mutations, however, insurance providers do not always cover

its costs for low-grade tumors. Therefore, a more accessible and reliable diagnostic

tool is needed for these cases. In Dou et al. [65], the researchers address this problem

by building highly accurate predictive models that use as input only proteomics data

(measurements of protein levels in a tissue sample) that are more readily available. Next,

we investigate whether researchers could use the methods proposed in this dissertation

to discover features e�ciently and build models of comparable accuracy.

For this experiment, we use as input a query table containing 95 di�erent individual

samples (rows) and two columns that contain (1) a sample ID that can be used for joining

tables, and (2) a target column storing binary data that indicates the mutation status of

the CTNNB1 gene. As candidate features, we use a separate table that contains over

11.000 columns, which contain measurements for each protein detected in a tissue, in

addition to an ID column that links these records to the same 95 samples from our target

variable. The goal is to e�ciently retrieve useful features from this table using a QCR

index. To evaluate the accuracy of the built models, we use similar tables containing an

142
additional set of 138 samples from an independent cohort of patients. As in Section 7.1,

we train a machine learning classi�cation model using the CatBoost library [33]. For

feature indexing and retrieval, we use a method that retrieves only the top 500 features

using a QCR index and reranks them using Pearson’s correlation estimates computed

using the PM1 bootstrapping estimator.

Figure 7.3 shows the accuracy of di�erent models trained with the top-k ranked

features, varying k from 5 to 100. The results show that models trained with the k = 10

and k = 25 features are su�cient to achieve good performance. The ROC curves

have a similar shape to the models presented in Dou et al.[65], and the area under

the curve (AUC) scores obtained by these models are similar. In particular, one of our

best-performing models that uses only 25 features, achieves AUC=0.95 which is only

0.02 points away from the best-performing model (AUC=0.97) from Dou et al.[65]. The

exact source of this di�erence could be due to many reasons, including the choice of

features, learning algorithms, hyper-parameters, and random variance of the models.

When closely analyzing the selected features, we notice a signi�cant overlap between

the features selected by our method and the features used by the models of Dou et

al. [65]. Speci�cally, when we consider the top 10 features of the ranking, we notice

that 6 of them were also used by at least two of the models from Dou et al. [65], and

7 are used by at least one model. When we look at the top 25 features, the number of

features used by at least one model grows to 9. This suggests that our approach can

�nd the most relevant features in a dataset with a large number of features.

143

Figure 7.3: ROC curves for di�erent models trained using features automatically selected
using a QCR index and a random choice of features (RAN). A random choice of 25
features achieves only AUC=0.79. In contrast, our best QCR-based models achieve an
AUC score of up to 0.95. This score matches some models from Dou et al. [65] and is
only 0.02 points away from their best-performing model, which achieves AUC=0.97.
The exact score di�erence could be attributed to the choice features or other variables
such as a di�erent choice of learning algorithm and its hyper-parameters (since we did
not test multiple algorithms or perform hyperparameter tuning).

144

Chapter 8

Conclusion

In this dissertation we proposed multiple methods and algorithms, including the idea

of (weighted) join-correlation queries, multiple sampling-based sketches for estimating

statistics over table joins, and new indexing techniques for correlated data retrieval.

These methods open opportunities for more e�ective data discovery, analysis, and

integration, with implications spanning diverse applications, from automatic feature

selection over large data repositories (e.g., data lakes) for improving machine learning

model accuracy to enhancing dataset search engines and data catalogs. In the remainder

of this chapter, we summarize our technical contributions (Section 8.1) and outline

some limitations and future research directions (Section 8.2).

8.1 Summary of Contributions

In Chapter 4, we proposed join-correlation queries, an approach for e�ciently

answering this new type of query that discovers correlated tables, and a sampling

algorithm to build data sketches (which we refer to as CSK sketches) for estimating

correlations over unjoined tables without the need of a full join computation. We also

145
developed con�dence interval bounds for the accuracy of these correlation estimates

and used them to design functions to rank the discovered columns. The applicability of

these sketches extends beyond correlations, having broader utility in estimating various

statistics and data relationships over table joins.

In Chapter 5, we extended CSK sketches in two other directions: (1) we introduced

a novel tuple-based sampling strategy that allows building sketches (namely TUPSK

sketches) that properly handle join keys with repeated values and (2) carried out an

experimental study of these sketches along with di�erent estimators to e�ciently

estimate mutual information across unjoined tables. Our results show the e�ectiveness

of TUPSK sketches for approximating mutual information values accurately across

di�erent data types. Finally, we believe this sampling approach is of independent

interest and may have applications to other problems, such as join size estimation.

In Chapter 6, we generalized join-correlation queries to support user-de�nedweights

and introduced another approach for indexing tables (based on a novel QCR hashing

scheme) that allows answering (weighted) join-correlation queries even more e�ciently.

Our results show that this approach leads to enhanced retrieval accuracy and recall.

8.2 Future Directions

This dissertation leaves many open research questions that can be explored in future

work. Next, we point out some directions we believe are worth being pursued.

• Applications: Since the publication of Auctus, many follow-up papers have ad-

dressed the problem of relational data augmentation for improving machine

learning models [39, 110, 96]. However, to the best of our knowledge, none of

these systems employ sketching techniques similar to the ones proposed in this

146
dissertation. It would be interesting to integrate and evaluate the impact of our

algorithms in these systems. Moreover, it would be interesting to explore the

possible application of sketches to new problems, such as federated feature selec-

tion [75] or monitoring of the quality of machine learning models in production.

• Feature Selection: In Chapter 7 we provided a preliminary evaluation of our algo-

rithm for the task of feature selection. However, our experiments are far from

exhaustive and there are many improvements to be pursued. For example, the

diversi�cation algorithm is expensive to compute, even when using sketches, due

to its high computational complexity. In the area of web search engines, similar

diversi�cation algorithms have been proven to be NP-hard via reduction to the

classic maximum coverage problem [140]. Therefore, it is worth investigating

e�cient and e�ective heuristics to address this problem in the context of data

discovery. One possible direction is to explore the use of "conditional correla-

tion measures" (e.g., conditional mutual information) that take into account the

features that have been previously selected.

• Indexing Methods for Categorical Data: Our QCR indexing method is only applica-

ble to numerical data. However, as discussed in Chapter 5, other data types like

categorical variables also need to be supported as well.

• Better Bounds for the Sketch Estimates: From a theoretical point of view, there

are still some open problems. For instance, the correlation bounds proposed

in Chapter 4 are not tight and could be improved (e.g., using concentration

inequalities for sampling without replacement [6, 152]). Moreover, we do not

provide bounds for the MI estimates computed using sketches in Chapter 5. While

there are known bounds for the empirical entropy computed using subsampling

147
and the MLE estimator [159, 37], it is unclear if their assumptions hold in our

setting. Additionally, we are not aware of similar bounds for KSG-like estimators

that are used for numerical data.

• Di�erent Types of Joins: A common assumption throughout this dissertation is that

the tables can be joined using an equi-join. However, in practice, there are other

join types that need to be supported. For instance, joins can be done over spatial

data attributes (which are often represented as a pair of latitude and longitude

values). In this setting, joining can be done not only by comparing equal values

but also by �nding records with a maximum distance (e.g., using the Euclidean

distance). How to build sketches and indexes that support e�cient correlated

data search in such settings is an open question.

148

Bibliography

[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for

approximate query answering. SIGMOD Rec., 28(2):275–286, June 1999.

[2] Apache lucene. https://lucene.apache.org/index.html.

[3] M. Baak, R. Koopman, H. Snoek, and S. Klous. A new correlation coe�cient

between categorical, ordinal and interval variables with pearson characteristics.

Computational Statistics & Data Analysis, page 107043, 2020.

[4] S. Bapat. Discover, understand and manage your data with Data Catalog,

now GA. https://cloud.google.com/blog/products/data-

analytics/data-catalog-metadata-management-now-

generally-available, 2020. [Online; accessed 22-June-2020].

[5] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting

distinct elements in a data stream. In J. D. P. Rolim and S. Vadhan, editors,

Randomization and Approximation Techniques in Computer Science, pages 1–10,

Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[6] R. Bardenet, O.-A. Maillard, et al. Concentration inequalities for sampling without

replacement. Bernoulli, 21(3):1361–1385, 2015.

https://lucene.apache.org/index.html
https://cloud.google.com/blog/products/data-analytics/data-catalog-metadata-management-now-generally-available
https://cloud.google.com/blog/products/data-analytics/data-catalog-metadata-management-now-generally-available
https://cloud.google.com/blog/products/data-analytics/data-catalog-metadata-management-now-generally-available

149
[7] O. Benjelloun, S. Chen, and N. Noy, editors. Google Dataset Search by the Numbers,

2020.

[8] M. Beraha, A. M. Metelli, M. Papini, A. Tirinzoni, andM. Restelli. Feature selection

via mutual information: New theoretical insights. In 2019 International Joint

Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2019.

[9] M. Bermudez-Edo, P. Barnaghi, and K. Moessner. Analysing real world data

streams with spatio-temporal correlations: Entropy vs. pearson correlation. Au-

tomation in Construction, 88:87–100, 2018.

[10] K. J. Berry and P. W. Mielke Jr. A monte carlo investigation of the �sher z

transformation for normal and nonnormal distributions. Psychological Reports,

87(3_suppl):1101–1114, 2000.

[11] A. Bessa, S. Castelo, R. Rampin, A. Santos, M. Shoemate, V. D’Orazio, and J. Freire.

An ecosystem of applications for modeling political violence. In Proceedings of

the 2021 International Conference on Management of Data, pages 2384–2388, 2021.

[12] A. Bessa, S. Castelo, R. Rampin, A. S. R. Santos, M. Shoemate, V. D’Orazio, and

J. Freire. An ecosystem of applications for modeling political violence. In ACM

SIGMOD, pages 2384–2388, 2021.

[13] A. Bessa, M. Daliri, J. Freire, C. Musco, C. Musco, A. Santos, and H. Zhang.

Weighted minwise hashing beats linear sketching for inner product estimation.

In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems, 2023.

[14] A. Bessa, J. Freire, T. Dasu, and D. Srivastava. E�ective discovery of meaningful

outlier relationships. ACM Transactions on Data Science, 1(2):1–33, 2020.

150
[15] K. Beyer, R. Gemulla, P. J. Haas, B. Reinwald, and Y. Sismanis. Distinct-value

synopses for multiset operations. Commun. ACM, 52(10):87–95, Oct. 2009.

[16] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On synopses for

distinct-value estimation under multiset operations. In Proceedings of the 2007

ACM SIGMOD International Conference on Management of Data, SIGMOD ’07,

pages 199–210, New York, NY, USA, 2007. ACM.

[17] A. J. Bishara and J. B. Hittner. Testing the signi�cance of a correlation with non-

normal data: Comparison of Pearson, Spearman, transformation, and resampling

approaches. Psychological Methods, 2012.

[18] A. J. Bishara and J. B. Hittner. Reducing bias and error in the correlation coe�cient

due to nonnormality. Educational and Psychological Measurement, 75(5):785–804,

2015.

[19] A. J. Bishara and J. B. Hittner. Con�dence intervals for correlations when data

are not normal. Behavior Research Methods, 49(1):294–309, 2017.

[20] A. J. Bishara, J. Li, and T. Nash. Asymptotic con�dence intervals for the pearson

correlation via skewness and kurtosis. British Journal of Mathematical and

Statistical Psychology, 71(1):167–185, 2018.

[21] C. I. Bliss et al. Statistics in biology. statistical methods for research in the natural

sciences. Statistics in biology. Statistical methods for research in the natural sciences.,

1967.

[22] J. Boidol and A. Hapfelmeier. Fast mutual information computation for

dependency-monitoring on data streams. In Proceedings of the Symposium on

151
Applied Computing, SAC ’17, page 830–835, New York, NY, USA, 2017. Association

for Computing Machinery.

[23] D. Bonett and T. A. Wright. Sample size requirements for estimating pearson,

kendall and spearman correlations. Psychometrika, 65(1):23–28, 2000.

[24] A. Bowley. The standard deviation of the correlation coe�cient. Journal of the

American Statistical Association, 23(161):31–34, 1928.

[25] D. Brickley, M. Burgess, and N. Noy. Google dataset search: Building a search

engine for datasets in an open web ecosystem. In The World Wide Web Conference,

WWW ’19, pages 1365–1375, New York, NY, USA, 2019. ACM.

[26] A. Z. Broder, D. Carmel, M. Herscovici, A. So�er, and J. Zien. E�cient query

evaluation using a two-level retrieval process. In Proceedings of the twelfth

international conference on Information and knowledge management, pages 426–

434, 2003.

[27] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján. Conditional likelihood maximi-

sation: a unifying framework for information theoretic feature selection. The

journal of machine learning research, 13:27–66, 2012.

[28] K. E. Brown and D. A. Talbert. Heuristically reducing the cost of correlation-based

feature selection. In Proceedings of the 2019 ACM Southeast Conference, ACM SE

’19, page 24–30, New York, NY, USA, 2019. Association for Computing Machinery.

[29] P. Brown, P. J. Haas, J. Myllymaki, H. Pirahesh, B. Reinwald, and Y. Sismanis.

Toward automated large-scale information integration and discovery. In Data

Management in a Connected World, volume 3551 of Lecture Notes in Computer

Science, pages 161–180. Springer, 2005.

152
[30] R. Cappuzzo, G. Varoquaux, A. Coelho, and P. Papotti. Retrieve, merge, predict:

Augmenting tables with data lakes. arXiv preprint arXiv:2402.06282, 2024.

[31] S. Castelo, R. Rampin, A. Santos, A. Bessa, F. Chirigati, and J. Freire. Auctus: A

dataset search engine for data discovery and augmentation. Proceedings of the

VLDB Endowment, 14(12):2791–2794, 2021.

[32] R. Castro Fernandez, J. Min, D. Nava, and S. Madden. Lazo: A cardinality-based

method for coupled estimation of jaccard similarity and containment. In 2019

IEEE 35th International Conference on Data Engineering (ICDE), pages 1190–1201,

April 2019.

[33] Catboost – open-source gradient boosting library. https://catboost.ai/.

[34] G. Chandrashekar and F. Sahin. A survey on feature selectionmethods. Computers

& Electrical Engineering, 40(1):16–28, 2014. 40th-year commemorative issue.

[35] A. Chapman, E. Simperl, L. Koesten, G. Konstantinidis, L.-D. Ibáñez, E. Kacprzak,

and P. Groth. Dataset search: a survey. The VLDB Journal, 29(1):251–272, 2020.

[36] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. Towards estima-

tion error guarantees for distinct values. In Proceedings of the Nineteenth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’00,

page 268–279, New York, NY, USA, 2000. Association for Computing Machinery.

[37] X. Chen and S. Wang. E�cient approximate algorithms for empirical entropy

and mutual information. In Proceedings of the 2021 International Conference on

Management of Data, pages 274–286, 2021.

https://catboost.ai/

153
[38] Y. Chen and K. Yi. Two-level sampling for join size estimation. In Proceedings

of the 2017 ACM International Conference on Management of Data, SIGMOD ’17,

page 759–774, New York, NY, USA, 2017. Association for Computing Machinery.

[39] N. Chepurko, R. Marcus, E. Zgraggen, R. C. Fernandez, T. Kraska, and D. Karger.

Arda: Automatic relational data augmentation for machine learning. Proceedings

of the VLDB Endowment, 13(9), 2020.

[40] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire. Data polygamy: the many-

many relationships among urban spatio-temporal data sets. In ACM SIGMOD,

pages 1011–1025, 2016.

[41] CKAN. The open source data portal software. https://ckan.org/.

[42] E. Cohen. Coordinated sampling. In Encyclopedia of Algorithms, pages 449–454.

Springer New York, New York, NY, 2016.

[43] E. Cohen. Sampling big ideas in query optimization. In Proceedings of the 42nd

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages

361–371, 2023.

[44] E. Cohen and H. Kaplan. Tighter estimation using bottom k sketches. Proc. VLDB

Endow., 1(1):213–224, Aug. 2008.

[45] R. Cohen, L. Katzir, and A. Yehezkel. A minimal variance estimator for the

cardinality of big data set intersection. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’17, page

95–103, New York, NY, USA, 2017. Association for Computing Machinery.

https://ckan.org/

154
[46] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for mas-

sive data: Samples, histograms, wavelets, sketches. Foundations and Trends in

Databases, 4(1-3):1–294, 2012.

[47] S. Dahlgaard, M. B. T. Knudsen, and M. Thorup. Practical hash functions for

similarity estimation and dimensionality reduction. In Proceedings of the 31st

International Conference on Neural Information Processing Systems, NIPS’17, page

6618–6628, Red Hook, NY, USA, 2017. Curran Associates Inc.

[48] M. Daliri, J. Freire, C. Musco, A. Santos, and H. Zhang. Sampling methods for

inner product sketching. Proceedings of the VLDB Endowment, 2024. (To appear).

[49] A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler. A Framework for Estimating

Stream Expression Cardinalities. In W. Martens and T. Zeume, editors, 19th

International Conference on Database Theory (ICDT 2016), volume 48 of Leibniz In-

ternational Proceedings in Informatics (LIPIcs), pages 6:1–6:17, Dagstuhl, Germany,

2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[50] A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler. A Framework for Estimating

Stream Expression Cardinalities. In W. Martens and T. Zeume, editors, 19th

International Conference on Database Theory (ICDT 2016), volume 48 of Leibniz In-

ternational Proceedings in Informatics (LIPIcs), pages 6:1–6:17, Dagstuhl, Germany,

2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[51] https://www.darpa.mil/program/data-driven-discovery-

of-models, 2019.

[52] Data.gov: U.S. Government’s open data. https://www.data.gov/.

[53] https://pypi.org/project/datamart-profiler/, 2021.

https://www.darpa.mil/program/data-driven-discovery-of-models
https://www.darpa.mil/program/data-driven-discovery-of-models
https://www.data.gov/
https://pypi.org/project/datamart-profiler/

155
[54] The Dataverse Project. https://dataverse.org.

[55] Harvard Dataverse. https://dataverse.harvard.edu/.

[56] C. O. Daub, R. Steuer, J. Selbig, and S. Kloska. Estimating mutual information

using b-spline functions–an improved similarity measure for analysing gene

expression data. BMC bioinformatics, 5(1):1–12, 2004.

[57] J. C. de Winter, S. D. Gosling, and J. Potter. Comparing the pearson and spearman

correlation coe�cients across distributions and sample sizes: A tutorial using

simulations and empirical data. Psychological Methods, 2016.

[58] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K. Elmagarmid,

I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang. The data civilizer system. In 8th

Biennial Conference on Innovative Data Systems Research, CIDR 2017, Chaminade,

CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org, 2017.

[59] S. J. Devlin, R. Gnanadesikan, and J. R. Kettenring. Robust estimation and outlier

detection with correlation coe�cients. Biometrika, 62(3):531–545, 12 1975.

[60] S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes.

In Proceedings of the 34th international ACM SIGIR conference on Research and

development in Information Retrieval, pages 993–1002, 2011.

[61] https://www.docker.com/, 2021.

[62] Y. Dong and M. Oyamada. Table enrichment system for machine learning. In

Proceedings of the 45th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 3267–3271, 2022.

https://dataverse.org
https://dataverse.harvard.edu/
https://www.docker.com/

156
[63] G. Doquire and M. Verleysen. Feature selection with missing data using mutual

information estimators. Neurocomputing, 90:3–11, 2012. Advances in arti�cial

neural networks, machine learning, and computational intelligence (ESANN

2011).

[64] V. D’Orazio. Con�ict forecasting and prediction. In Oxford Research Encyclopedia

of International Studies. 2020.

[65] Y. Dou, L. Katsnelson, M. A. Gritsenko, Y. Hu, B. Reva, R. Hong, Y.-T. Wang,

I. Kolodziejczak, R. J.-H. Lu, C.-F. Tsai, et al. Proteogenomic insights suggest

druggable pathways in endometrial carcinoma. Cancer cell, 41(9):1586–1605,

2023.

[66] N. Du�eld, C. Lund, and M. Thorup. Priority sampling for estimation of arbitrary

subset sums. J. ACM, 54(6):32–es, Dec. 2007.

[67] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall/CRC

Monographs on Statistics & Applied Probability. Taylor & Francis, 1994.

[68] https://www.elastic.co/, 2021.

[69] M. Esmailoghli, J.-A. Quiané-Ruiz, and Z. Abedjan. Mate: multi-attribute table

extraction. Proceedings of the VLDB Endowment, 15(8):1684–1696, 2022.

[70] C. Estan and J. F. Naughton. End-biased samples for join cardinality estimation.

In 22nd International Conference on Data Engineering (ICDE’06), pages 20–20,

2006.

[71] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.

Journal of computer and system sciences, 66(4):614–656, 2003.

https://www.elastic.co/

157
[72] M. Ferdosi, A. Gholamidavoodi, and H. Mohimani. Measuring mutual information

between all pairs of variables in subquadratic complexity. In S. Chiappa and

R. Calandra, editors, Proceedings of the Twenty Third International Conference on

Arti�cial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning

Research, pages 4399–4409. PMLR, 26–28 Aug 2020.

[73] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker.

Aurum: A Data Discovery System. In ICDE ’18, pages 1001–1012, 2018.

[74] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. HyperLogLog: the analysis

of a near-optimal cardinality estimation algorithm. In P. Jacquet, editor, AofA:

Analysis of Algorithms, volume DMTCS Proceedings vol. AH, 2007 Conference on

Analysis of Algorithms (AofA 07) of DMTCS Proceedings, pages 137–156, Juan les

Pins, France, June 2007. Discrete Mathematics and Theoretical Computer Science.

[75] R. Fu, Y. Wu, Q. Xu, and M. Zhang. Feast: A communication-e�cient federated

feature selection framework for relational data. Proceedings of the ACM on

Management of Data, 1(1):1–28, 2023.

[76] S. Galhotra, Y. Gong, and R. C. Fernandez. Metam: Goal-oriented data discovery.

In ICDE. IEEE, 2023.

[77] S. Ganguly, P. B. Gibbons, Y. Matias, and A. Silberschatz. Bifocal sampling for

skew-resistant join size estimation. SIGMOD Rec., 25(2):271–281, June 1996.

[78] S. Gao, G. Ver Steeg, and A. Galstyan. E�cient estimation of mutual information

for strongly dependent variables. In Arti�cial intelligence and statistics, pages

277–286. PMLR, 2015.

158
[79] W. Gao, S. Kannan, S. Oh, and P. Viswanath. Estimating mutual information for

discrete-continuous mixtures. Advances in neural information processing systems,

30, 2017.

[80] H.-O. Georgii. Stochastics: Introduction to Probability and Statistics. De Gruyter,

Berlin, Boston, 2012.

[81] M. Grover. Amundsen — Lyft’s data discovery & metadata engine.

https://eng.lyft.com/amundsen-lyfts-data-discovery-

metadata-engine-62d27254fbb9, 2019. [Online; accessed 20-October-

2019].

[82] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-based estimation

of the number of distinct values of an attribute. In Proceedings of the 21th In-

ternational Conference on Very Large Data Bases, VLDB ’95, page 311–322, San

Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[83] A. Hacine-Gharbi and P. Ravier. A binning formula of bi-histogram for joint

entropy estimation using mean square error minimization. Pattern Recognition

Letters, 101:21–28, 2018.

[84] M. Hall and L. Smith. Feature subset selection: a correlation based �lter approach.

In Proceedings of International Conference on Neural Information Processing and

Intelligent Information Systems, 1998.

[85] M. A. Hall and L. A. Smith. Feature selection for machine learning: comparing a

correlation-based �lter approach to the wrapper. In FLAIRS conference, volume

1999, pages 235–239, 1999.

https://eng.lyft.com/amundsen-lyfts-data-discovery-metadata-engine-62d27254fbb9
https://eng.lyft.com/amundsen-lyfts-data-discovery-metadata-engine-62d27254fbb9

159
[86] H. Harmouch and F. Naumann. Cardinality estimation: An experimental survey.

Proc. VLDB Endow., 11(4):499–512, Dec. 2017.

[87] K. Hlavackova-Schindler, M. Palus, M. Vejmelka, and J. Bhattacharya. Causality

detection based on information-theoretic approaches in time series analysis.

Physics Reports, 441 (2007) 1 – 46, 02 2007.

[88] W. Hoe�ding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30, 1963.

[89] P. Holmes. Correlation: From picture to formula. Teaching Statistics, 23(3):67–71,

2001.

[90] S. R. Hong, S. Castelo, V. D’Orazio, C. Benthune, A. Santos, S. Langevin, D. Jonker,

E. Bertini, and J. Freire. Towards evaluating exploratory model building process

with automl systems. arXiv preprint arXiv:2009.00449, 2020.

[91] X. Hu, A. Jung, and G. Qin. Interval estimation for the correlation coe�cient.

The American Statistician, 74(1):29–36, 2020.

[92] D. Huang, D. Y. Yoon, S. Pettie, and B. Mozafari. Joins on samples: a theoretical

guide for practitioners. Proceedings of the VLDB Endowment, 13(4):547–560, 2019.

[93] M. Hutter and M. Za�alon. Distribution of mutual information from complete

and incomplete data. Computational Statistics & Data Analysis, 48(3):633–657,

2005.

[94] P. Indyk and A. McGregor. Declaring independence via the sketching of sketches.

In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-

160
rithms, SODA ’08, page 737–745, USA, 2008. Society for Industrial and Applied

Mathematics.

[95] Y. E. Ioannidis. The history of histograms (abridged). In VLDB, pages 19–30, 2003.

[96] A. Ionescu, R. Hai, M. Fragkoulis, and A. Katsifodimos. Join path-based data

augmentation for decision trees. In 2022 IEEE 38th International Conference on

Data Engineering Workshops (ICDEW), pages 84–88, 2022.

[97] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques.

ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[98] F. Keller, E. Müller, and K. Böhm. Estimating mutual information on data streams.

In Proceedings of the 27th International Conference on Scienti�c and Statistical

Database Management, SSDBM ’15, New York, NY, USA, 2015. Association for

Computing Machinery.

[99] D. Y. Kenett, X. Huang, I. Vodenska, S. Havlin, and H. E. Stanley. Partial correlation

analysis: Applications for �nancial markets. Quantitative Finance, 15(4):569–578,

2015.

[100] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinali-

ties: Estimating correlated joins with deep learning. In CIDR 2019, 9th Biennial

Conference on Innovative Data Systems Research, Asilomar, CA, USA, January

13-16, 2019, Online Proceedings. www.cidrdb.org, 2019.

[101] D. Knuth, Addison-Wesley, and P. Education. The Art of Computer Programming.

Number v. 3 in Addison-Wesley series in computer science and information

processing. Addison-Wesley, 1997.

161
[102] A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information.

Physical review E, 69(6):066138, 2004.

[103] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu. To join or not to join? thinking

twice about joins before feature selection. In Proceedings of the 2016 International

Conference on Management of Data, pages 19–34, 2016.

[104] K. C. Kurnit, G. N. Kim, B. M. Fellman, D. L. Urbauer, G. B. Mills, W. Zhang, and

R. R. Broaddus. Ctnnb1 (beta-catenin) mutation identi�es low grade, early stage

endometrial cancer patients at increased risk of recurrence. Modern Pathology,

30(7):1032–1041, 2017.

[105] M. Lan. DataHub: A generalized metadata search & discovery tool. https://

engineering.linkedin.com/blog/2019/data-hub, 2019. [Online;

accessed 22-June-2020].

[106] O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paulheim, and C. Bizer. The

mannheim search join engine. Journal of Web Semantics, 35:159 – 166, 2015.

[107] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann. Cardinality estimation

done right: Index-based join sampling. In CIDR 2017, 8th Biennial Conference

on Innovative Data Systems Research, Chaminade, CA, USA, January 8-11, 2017,

Online Proceedings. www.cidrdb.org, 2017.

[108] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu. Feature

selection: A data perspective. ACM Comput. Surv., 50(6), dec 2017.

[109] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selectivity estimation

through adaptive sampling. SIGMOD Rec., 19(2):1–11, May 1990.

https://engineering.linkedin.com/blog/2019/data-hub
https://engineering.linkedin.com/blog/2019/data-hub

162
[110] J. Liu, C. Chai, Y. Luo, Y. Lou, J. Feng, and N. Tang. Feature augmentation

with reinforcement learning. In 2022 IEEE 38th International Conference on Data

Engineering (ICDE), pages 3360–3372. IEEE, 2022.

[111] DisjunctionMaxQuery (Lucene 8.8.2 API). https://lucene.

apache.org/core/8_8_2/core/org/apache/lucene/search/

DisjunctionMaxQuery.html.

[112] F. Mahdisoltani, J. Biega, and F. M. Suchanek. Yago3: A knowledge base from

multilingual wikipedias. In CIDR, 2013.

[113] P. Mandros, M. Boley, and J. Vreeken. Discovering reliable approximate functional

dependencies. In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 355–363, 2017.

[114] P. Mandros, M. Boley, and J. Vreeken. Discovering reliable correlations in cate-

gorical data. In 2019 IEEE International Conference on Data Mining (ICDM), pages

1252–1257. IEEE, 2019.

[115] P. Mandros, D. Kaltenpoth, M. Boley, and J. Vreeken. Discovering functional

dependencies from mixed-type data. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 1404–1414,

2020.

[116] D. McAllester and K. Stratos. Formal limitations on the measurement of mutual

information. In International Conference on Arti�cial Intelligence and Statistics,

pages 875–884. PMLR, 2020.

[117] T. Micceri. The unicorn, the normal curve, and other improbable creatures.

Psychological bulletin, 105(1):156, 1989.

https://lucene.apache.org/core/8_8_2/core/org/apache/lucene/search/DisjunctionMaxQuery.html
https://lucene.apache.org/core/8_8_2/core/org/apache/lucene/search/DisjunctionMaxQuery.html
https://lucene.apache.org/core/8_8_2/core/org/apache/lucene/search/DisjunctionMaxQuery.html

163
[118] A. Myers, W. T. Barry, M. S. Hirsch, U. Matulonis, and L. Lee. �-catenin muta-

tions in recurrent �go ia grade i endometrioid endometrial cancers. Gynecologic

oncology, 134(2):426–427, 2014.

[119] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union search on open data.

Proceedings of the VLDB Endowment, 11(7):813–825, 2018.

[120] A. D. Nobari and D. Ra�ei. E�ciently transforming tables for joinability. In 2022

IEEE 38th International Conference on Data Engineering (ICDE), pages 1649–1661.

IEEE, 2022.

[121] NYC OpenData. https://opendata.cityofnewyork.us.

[122] City of Chicago Data Portal. https://data.cityofchicago.org.

[123] United States Government Open Data. https://www.data.gov.

[124] S. Padmanabhan, B. Bhattacharjee, T. Malkemus, L. Cranston, and M. Huras.

Multi-dimensional clustering: A new data layout scheme in DB2. In SIGMOD,

pages 637–641, 2003.

[125] L. Paninski. Estimation of entropy and mutual information. Neural computation,

15(6):1191–1253, 2003.

[126] H. Peng and Y. Fan. Feature selection by optimizing a lower bound of conditional

mutual information. Information Sciences, 418:652–667, 2017.

[127] F. Pennerath, P. Mandros, and J. Vreeken. Discovering approximate functional

dependencies using smoothed mutual information. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

pages 1254–1264, 2020.

https://opendata.cityofnewyork.us
https://data.cityofchicago.org
https://www.data.gov

164
[128] https://www.prio.org/Data/PRIO-GRID/, 2021.

[129] C. R. Rao. Linear Statistical Inference and Its Applications. Wiley, New York, 1973.

[130] Reports and Data. Data Catalog Market | Size & Growth Report, 2020-

2027. https://www.reportsanddata.com/report-detail/data-

catalog-market, 2020. [Online; accessed 28-March-2021].

[131] L. M. A. Rocha, A. Bessa, F. Chirigati, E. OFriel, M. M. Moro, and J. Freire. Un-

derstanding spatio-temporal urban processes. In International Conference on Big

Data (Big Data), pages 563–572, 2019.

[132] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation

coe�cient. The American Statistician, 42(1):59–66, 1988.

[133] B. C. Ross. Mutual information between discrete and continuous data sets. PloS

one, 9(2):e87357, 2014.

[134] M. S. Roulston. Estimating the errors on measured entropy and mutual informa-

tion. Physica D: Nonlinear Phenomena, 125(3-4):285–294, 1999.

[135] F. Rusu and A. Dobra. Sketches for size of join estimation. ACM Trans. Database

Syst., 33(3), Sept. 2008.

[136] A. Santos, A. Bessa, F. Chirigati, C. Musco, and J. Freire. Correlation sketches

for approximate join-correlation queries. In Proceedings of the 2021 International

Conference on Management of Data, pages 1531–1544, 2021.

[137] A. Santos, A. Bessa, C. Musco, and J. Freire. A sketch-based index for correlated

dataset search. In 2022 IEEE 38th International Conference on Data Engineering

(ICDE), pages 2928–2941, 2022.

https://www.prio.org/Data/PRIO-GRID/
https://www.reportsanddata.com/report-detail/data-catalog-market
https://www.reportsanddata.com/report-detail/data-catalog-market

165
[138] A. Santos, S. Castelo, C. Felix, J. P. Ono, B. Yu, S. R. Hong, C. T. Silva, E. Bertini,

and J. Freire. Visus: An interactive system for automatic machine learning model

building and curation. In Proceedings of the Workshop on Human-In-the-Loop

Data Analytics, pages 1–7, 2019.

[139] A. Santos, F. Korn, and J. Freire. E�ciently estimating mutual information

between attributes across tables. In 2024 IEEE 40th International Conference on

Data Engineering (ICDE), 2024.

[140] R. L. Santos, C. Macdonald, I. Ounis, et al. Search result diversi�cation. Founda-

tions and Trends® in Information Retrieval, 9(1):1–90, 2015.

[141] A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy, H. Lee, F. Wu, R. Xin, and C. Yu. Find-

ing related tables. Proceedings of the 2012 ACM SIGMOD International Conference

on Management of Data, 2012.

[142] V. Shah, A. Kumar, and X. Zhu. Are key-foreign key joins safe to avoid when

learning high-capacity classi�ers? Proceedings of the VLDB Endowment, 11(3),

2017.

[143] V. Shah, J. Lacanlale, P. Kumar, K. Yang, and A. Kumar. Towards benchmarking

feature type inference for automl platforms. In Proceedings of the 2021 International

Conference on Management of Data, SIGMOD ’21, page 1584–1596, New York, NY,

USA, 2021. Association for Computing Machinery.

[144] G. L. Shevlyakov and H. Oja. Robust correlation: Theory and applications, volume 3.

John Wiley & Sons, 2016.

[145] G. Shieh. Estimation of the simple correlation coe�cient. Behavior Research

Methods, 42(4):906–917, 2010.

166
[146] M. Siedlaczek, A. Mallia, and T. Suel. Using conjunctions for faster disjunctive

top-k queries. In Proceedings of the Fifteenth ACM International Conference on

Web Search and Data Mining, pages 917–927, 2022.

[147] The Socrata Open Data API. https://dev.socrata.com.

[148] V. Solo. On causality and mutual information. In 2008 47th IEEE Conference on

Decision and Control, pages 4939–4944, 2008.

[149] G. J. Székely, M. L. Rizzo, and N. K. Bakirov. Measuring and testing dependence

by correlation of distances. Ann. Statist., 35(6):2769–2794, 12 2007.

[150] The Tablesaw Library. https://github.com/jtablesaw/tablesaw.

[151] D. Ting. Towards optimal cardinality estimation of unions and intersections with

sketches. In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 1195–1204, 2016.

[152] I. Tolstikhin. Concentration inequalities for samples without replacement. Theory

of Probability & Its Applications, 61(3):462–481, 2017.

[153] N. Tonellotto, C. Macdonald, and I. Ounis. E�cient query processing for scalable

web search. Foundations and Trends in Information Retrieval, 12(4-5):319–500,

2018.

[154] H. Turtle and J. Flood. Query evaluation: strategies and optimizations. Information

Processing & Management, 31(6):831–850, 1995.

[155] P. Venetis, Y. Sismanis, and B. Reinwald. Crsi: a compact randomized similarity

index for set-valued features. In Proceedings of the 15th International Conference

on Extending Database Technology, pages 384–395, 2012.

https://dev.socrata.com
https://github.com/jtablesaw/tablesaw

167
[156] D. Vengerov, A. C. Menck, M. Zait, and S. P. Chakkappen. Join size estimation

subject to �lter conditions. Proc. VLDB Endow., 8(12):1530–1541, Aug. 2015.

[157] J. R. Vergara and P. A. Estévez. A review of feature selection methods based on

mutual information. Neural computing and applications, 24(1):175–186, 2014.

[158] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical

Software (TOMS), 11(1):37–57, 1985.

[159] C. Wang and B. Ding. Fast approximation of empirical entropy via subsampling.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 658–667, 2019.

[160] Wikipedia contributors. Multinomial distribution — Wikipedia, the free encyclo-

pedia, 2023. [Online; accessed 01-August-2023].

[161] R. R. Wilcox. Con�dence intervals for the slope of a regression line when the

error term has nonconstant variance. Computational Statistics & Data Analysis,

22(1):89–98, 1996.

[162] C. C. Williams. Democratizing Data at Airbnb. https://medium.

com/airbnb-engineering/democratizing-data-at-airbnb-

852d76c51770, 2017. [Online; accessed 22-June-2020].

[163] World Bank Open Data. https://data.worldbank.org.

[164] World Bank Group Finances. https://finances.worldbank.org.

[165] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. E�cient similarity joins for near-

duplicate detection. ACM Transactions on Database Systems (TODS), 36(3):1–41,

2011.

https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770
https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770
https://medium.com/airbnb-engineering/democratizing-data-at-airbnb-852d76c51770
https://data.worldbank.org
https://finances.worldbank.org

168
[166] Y. Yang, Y. Zhang, W. Zhang, and Z. Huang. Gb-kmv: An augmented kmv sketch

for approximate containment similarity search. In 2019 IEEE 35th International

Conference on Data Engineering (ICDE), pages 458–469, April 2019.

[167] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-

stein, S. Krishnan, and I. Stoica. Deep unsupervised cardinality estimation. Proc.

VLDB Endow., 13(3):279–292, Nov. 2019.

[168] B. Youngmann, M. Cafarella, Y. Moskovitch, and B. Salimi. Nexus: On explain-

ing confounding bias. In Companion of the 2023 International Conference on

Management of Data, pages 171–174, 2023.

[169] B. Youngmann, M. Cafarella, Y. Moskovitch, and B. Salimi. On explaining con-

founding bias. In 2023 IEEE 39th International Conference on Data Engineering

(ICDE). IEEE, 2023.

[170] K.-H. Yuan and P. M. Bentler. Inferences on correlation coe�cients in some

classes of nonnormal distributions. Journal of Multivariate Analysis, 72(2):230 –

248, 2000.

[171] K.-H. Yuan, P. M. Bentler, and W. Zhang. The e�ect of skewness and kurtosis on

mean and covariance structure analysis: The univariate case and its multivariate

implication. Sociological Methods & Research, 34(2):240–258, 2005.

[172] https://zenodo.org/, 2021.

[173] S. Zhang and K. Balog. Ad hoc table retrieval using semantic similarity. In

Proceedings of the 2018 World Wide Web Conference, WWW ’18, pages 1553–1562,

Republic and Canton of Geneva, Switzerland, 2018. International World Wide

Web Conferences Steering Committee.

https://zenodo.org/

169
[174] S. Zhang and K. Balog. Web table extraction, retrieval, and augmentation: A

survey. ACM Transactions on Intelligent Systems and Technology (TIST), 11(2):1–35,

2020.

[175] S. Zhang and K. Balog. Semantic table retrieval using keyword and table queries.

ACM Transactions on the Web (TWEB), 15(3):1–33, 2021.

[176] Y. Zhang and Z. G. Ives. Finding related tables in data lakes for interactive data

science. In Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data, pages 1951–1966, 2020.

[177] E. Zhu, D. Deng, F. Nargesian, and R. J. Miller. Josie: Overlap set similarity search

for �nding joinable tables in data lakes. In Proceedings of the 2019 International

Conference on Management of Data, SIGMOD ’19, pages 847–864, New York, NY,

USA, 2019. ACM.

[178] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller. Lsh ensemble: Internet-scale

domain search. Proc. VLDB Endow., 9(12):1185–1196, Aug. 2016.

	Vita
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Challenges
	Contributions
	Join-Correlation Queries
	Algorithms for Evaluating Join-Correlation Queries

	Summary and Dissertation Outline

	Background & Related Work
	Cardinality Estimation via Sketches
	Correlation Estimation
	Mutual Information
	Additional Related Work

	Auctus: A Search Engine for Data Discovery and Augmentation
	The Auctus System
	Auctus Architecture
	Auctus User Interface
	Scalability and APIs

	Use Cases

	Evaluating Join-Correlation Queries using Sketches
	Ranking Datasets via Correlation Estimates
	Estimating Join-Correlation
	Correlation Sketches (the CSK method)
	Estimating Join-Correlation
	Discussion
	Implementation Details

	Ranking Correlated Columns
	Ranking with Uncertain Estimates
	Measuring the Estimation Error Risk
	Confidence Interval Bounds
	Scoring Functions

	Experimental Evaluation
	Datasets
	Correlation Estimation Accuracy
	Exploring Different Correlation Estimators
	Correlated Column Ranking
	Runtime Performance

	Tuple-based Sketches & Mutual Information Estimation
	MI Estimation over Joins with Repeated Keys
	Problem Statement
	Joining Arbitrary Tables

	Sketches for Joins on Repeated Keys
	Baseline: Two-Level Sampling (LV2SK)
	Proposed Approach: Tuple-based Sampling (TUPSK)

	Experimental Evaluation
	Synthetic Data Generation
	Experiments Using Synthetic Data
	Experiments Using Real Data
	Performance Evaluation

	Weighted Join-Correlation Queries and QCR Indexes
	Weighted Join-Correlation Queries
	Single-Stage Correlated Table Retrieval
	The QCR Hashing Scheme
	Building the Correlation Sketches
	Building the QCR Index Terms
	Querying the QCR Index
	Implementation Details
	Theoretical Analysis
	Discussion

	Experimental Evaluation
	Experimental Setup
	Retrieval of Highly Correlated Tables
	Balanced Retrieval of Correlated & Joinable Tables
	Runtime Performance

	Applications to Machine Learning Model Improvement
	Feature Discovery on Large Data Lakes
	Efficient Feature Ranking on Wide Tables

	Conclusion
	Summary of Contributions
	Future Directions

