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Abstract—Dataset search is emerging as a critical capability
in both research and industry: it has spurred many novel
applications, ranging from the enrichment of analyses of real-
world phenomena to the improvement of machine learning
models. Recent research in this field has explored a new class
of data-driven queries: queries consist of datasets and retrieve,
from a large collection, related datasets. In this paper, we study
a specific type of data-driven query that supports relational data
augmentation through numerical data relationships: given an
input query table, find the top-k tables that are both joinable
with it and contain columns that are correlated with a column
in the query. We propose a novel hashing scheme that allows
the construction of a sketch-based index to support efficient
correlated table search. We show that our proposed approach
is effective and efficient, and achieves better trade-offs that
significantly improve both the ranking accuracy and recall
compared to the state-of-the-art solutions.

Index Terms—dataset search, table search, sketching

I. INTRODUCTION

There is an ever-increasing number of datasets available
on the Web and within enterprises, which typically come in
different structured formats that range from tables embedded
on web pages to CSV and JSON files. Dataset search engines,
repositories, and data catalogs [1]–[7] allow users to search
large collections of datasets through simple keyword-based
queries and faceted search over dataset metadata. These,
however, have limited expressiveness, making it difficult (and
sometimes impossible) to convey specific information needs.
In this paper we study a specific type of query that enables
discovery of datasets that are correlated to an input query table.
To motivate the importance of correlations and correlated
dataset search, we start with an example that shows the
relationship between correlations and linear regression.
The Case for Correlated Data Search. Numerical cor-
relations have many important practical applications, which
range from the use of data analytics for understanding real-
world phenomena and confirming (or refuting) hypotheses [8]–
[11] to improving machine learning models through feature
selection [12], [13]. To illustrate this, we use the example
of simple linear regression [14], one most fundamental and
widely used methods for data analysis.

Linear regression is widely used to estimate the parameters
in a linear equation that predict values of a variable Y based on
another variable X . Formally, we can say that Y = b0+ b1X ,
where b0 is the intercept and b1 is the slope of the line. A
linear regression “learns” the parameters b1 and b0 of the linear
equation predicting an outcome variable, Y , based on values
of a predictor variable, X .

The Pearson’s correlation, which provides a measure of
the strength of association between two variables, is closely
related to linear regression since we can view it as the
standardized slope of the regression line. It can be shown that
b1 = r sXsY , where si is the standard deviation of the variable i,
and r is the Pearson’s correlation between X and Y [15].

In other words, the stronger the correlation is, the higher
is the predictive power of a variable. This illustrates that by
finding correlated variables in large dataset collections, we can
discover data that may “explain” or “predict” other variables
of interest. While correlations do not imply causation, discov-
ering data correlations is a starting point for more detailed
analyses that identify true causal data relationships and, in
turn, can be used to improve predictive models.
Scalability Challenges in Dataset Discovery. Methods have
been proposed to support table-driven queries. Given a table
TQ and a collection of tabular datasets D, these queries can,
for example, retrieve tables in D that are semantically similar
to TQ [16], or that can be merged with TQ through relational
join [17]–[19] or union [20] operations. These queries have
been used in data augmentation to improve machine learning
model performance [21], [22] and to enable novel applications
in domains such as political violence modeling [8].

Evaluating these queries over large, heterogeneous data
collections is challenging. For example, joinability queries can
be answered using inverted indexes and query processing tech-
niques [23], but they are orders of magnitude more expensive
than typical web search queries: joinability queries require the
computation of the overlap between the values of columns in
the input table and the values of columns in the data collection.
As a point of comparison, while web search engine queries
are typically short and have an average of only 2.2 terms per
query [24], modern data lakes store tables with thousands of
unique values per column [23]. Recent studies showed that
state-of-the-art query evaluation algorithms are efficient in the
web search setting, but they also reported that mean and tail
latencies quickly increase as the number of terms in the query
grows [25]. For joinability queries, query evaluation becomes
extremely expensive due to the large number of inverted index
look-ups and large posting lists. This increased cost leads to
query times that take up to multiple seconds [23] for retrieving
top-20 joinable tables, while typical document retrieval queries
take only a few milliseconds [25].
Scaling Correlated Dataset Search. One important class of
joinability queries are join-correlation queries [19] which,
given an input query table TQ and a tabular dataset collection
D, retrieves tables in D that are both joinable with TQ and
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contain columns correlated with one or more columns in TQ.
A typical solution to overcome scalability challenges in

joinability queries is to provide approximate answers [17]–
[19], [26] at cost of precision and recall. For correlated dataset
search, there is an additional challenge: besides identifying
possible joins, it is also necessary to compute correlation.
The state-of-the-art solution for join-correlation queries [19]
proposes a two-stage approach that relies on randomized
sketching algorithms: it first retrieves joinable candidate tables
based on join key overlap, and then re-ranks candidates using
approximate correlation estimates computed efficiently with
data sketches. While the sketching-based approach is effective
at estimating correlations, typically there are many more
joinable tables than tables that are both highly joinable and
contain a correlated column. Therefore, by retrieving only the
top-k most joinable tables in the first stage, this approach may
miss highly correlated tables that are not as highly joinable as
other uncorrelated tables.
Our Contributions. In this paper, we propose a new approach
to correlated dataset search. First, we define a more general
version of join-correlation queries that allows users to specify
the balance between joinability and correlation that is required
for specific applications. We propose a new hashing scheme
that enables the retrieval of columns that are both joinable
and correlated in a single step. This leads both to an increase
in recall and overall ranking quality at a smaller storage cost
compared to existing approaches.

Our method is based on a partition of the numerical plane
into quadrants, inspired by a simple correlation estimator
known as Quadrant Count Ratio [27]. This partitioning scheme
allows us to apply an additional hashing step that takes into
account both the join and the numerical attributes of interest.
By doing so, we reduce the problem of finding join-correlated
tables to the simpler problem of set overlap search between
hashes, which our method generates for the query and for the
tables in the data collection.

In summary, our main contributions are:
• We define the new class of weighted join-correlation

queries, of which join-correlation queries are a special
case (Section III);

• We propose a novel hashing scheme and new sketch-
based index – the QCR index – to efficiently support
correlated table search over large collections (Section IV);

• We perform a detailed experimental evaluation (Sec-
tion V) using synthetic and real-world dataset collections
which shows that: 1) Our QCR-based retrieval approach
attains higher precision and recall and a better balance
between ranking accuracy and joinability, when compared
to existing approaches; 2) The QCR index achieves a
better space-accuracy trade-off: for the same level of
recall and ranking accuracy, the QCR index needs sketch
sizes that require only about 1/4 of the storage needed
by existing approaches. Consequently, the QCR index
reduces the number of terms required per table, which
leads to better query processing times when compared to
retrieval strategies that attain a similar retrieval quality.

II. RELATED WORK
This paper studies a problem that lies in the intersection

of multiples research areas, including dataset discovery [28],
table search [29], data sketching [30], and efficient query
processing for web search [31].
Dataset Discovery. One of the lines of works that are closest
to ours is the research on dataset discovery. Recent works
have proposed dataset discovery methods that, given a query
dataset DQ as input, find datasets that can be merged with
DQ through relational operations such as join [17], [18], [23],
[26] and union [20]. More closely related to our work are
the approaches that retrieve datasets that are “joinable” with
the query dataset. To measure joinability, the most common
measure is the Jaccard Containment (JC) similarity, which
is defined as JC(X,Y ) = |X ∩ Y |/|X| where X is the
set of values of the query table join attribute, and Y is
the set of values of the retrieved table join attribute. While
algorithms such as JOSIE [23] provide an exact solution to this
problem, others such as LSH Ensemble [18], GB-KMV [26]
and Lazo [17] propose approximate approaches.

In previous work [19], we formalized the problem of
join-correlation estimation: how to efficiently estimate the
after-join correlation between numerical columns from a pair
of distinct tables without performing a join between them.
We proposed a sketch data structure that approximates join-
correlations efficiently. In order to search tables in a dataset
collection using sketches, a two-step approach is required:
tables retrieved using an approach for set overlap search (such
as the ones described above [17], [18], [23]) need to be re-
ordered according to correlations estimates computed using the
sketches. In this paper, we introduce a new hashing scheme
that allows searching for joinable and correlated tables in a
single step. In addition, our indexing method is complementary
to approach in [19] as it can replace the set overlap search to
improve ranking quality (as shown in Section V).

At a higher level, there are works that propose end-to-end
dataset search systems. For instance, the Data Civilizer [32]
and Aurum [33] use linkage graphs to help identify relevant
data for a given user task; JUNEAU [34] describes different
data search tasks and table relatedness measures (e.g., column
and row overlap, provenance, textual similarity), and proposes
a method to combine these measures for dataset search in
the Jupyter Notebook platform. Auctus [22] provides dataset
search over tables collected from multiple open-data portals
by automatically profiling and indexing tables using methods
for joinable table search [17].

Some works focus on applying dataset discovery to solve
machine learning problems. ARDA [21], for example, is a
system that focuses on relational data augmentation, i.e., it
automatically joins tables and selects the best features from
tables discovered by dataset search systems to augment an
initial query dataset. Another related system is Visus [35],
which integrates dataset search with an interactive machine
learning model-building workflow guided by humans. Our
work is complementary to these: our methods for efficient
correlated table search could be used to improve these systems.



Specifically, our method can be used by the dataset search
engines that powers these systems [21], [22], [32]–[34], [36]
to retrieve correlated tables that are more likely to improve
machine-learning models [12], [13], [37].

Finally, our method is also loosely related to the work
of Kumar et. al. [38], [39], where they propose decision
rules to predict when the features obtained through a join
can improve the error of a classification model. While their
approach was developed for classification over categorical
attributes, our methods are designed for numerical attributes.
Besides supporting discovery of tables with correlated numeric
attributes, our techniques could potentially be used to imple-
ment correlation-based feature selection methods [12], [13],
[37] that do not require performing full table joins. We focus
on the fundamental problem of efficient retrieval of corre-
lated columns which has many applications beyond improving
machine learning models (see e.g., [8]–[10]). Exploring these
applications is out of scope for this work and is a direction
we intend to pursue in future research.
Web Tables and Ad-hoc Table Search. Another related line
of work focuses on discovering and performing automatic ex-
tension of web tables that contain entities in textual form [29],
[40]. Zhang et al. [16], [41] formalize the problem of ad-hoc
table retrieval using semantic similarity, and propose machine
learning methods for addressing the problem. While these
works retrieve semantically similar tables that contain entities,
our focus is on retrieving tables that are numerically related,
such as datasets that contain columns that are highly correlated
with a column in the input query dataset.
Search Engine Architectures and Fast Top-k Retrieval. Our
work builds upon prior work on efficient query processing
algorithms for top-k document retrieval [42]–[45]. We refer the
reader to [31] for a comprehensive survey on the topic. While
these techniques have been traditionally used for retrieving
textual documents for scalable web search, we extend them
with data sketching methods to efficiently retrieve correlated
tables. In particular, we use an implementation of the Block-
Max WAND [43] dynamic pruning algorithm for fast re-
trieval of sketches. State-of-the-art top-k query processing
algorithms rely on dynamic pruning algorithms that require
a property known as non-negative monotonicity, which means
that the scores computed for each term in the index cannot
be negative [31], [46]. As we discuss in Section IV-A, this
property prevents the use of these algorithms for correlated
table retrieval. In this paper, we show that by decomposing
the retrieval into two smaller queries, we can leverage these
algorithmic optimizations. Our approach also uses a technique
that has been described as cascading [31]. More specifically,
our proposed hashing method allows for the efficient retrieval
of correlated columns (with a high recall), which can then be
passed onto another cascading layer that re-ranks candidates
using sketches to improve the overall ranking.

III. PRELIMINARIES AND PROBLEM DEFINITION

Let TQ be a query table comprised of a categorical column
KQ and a numerical column Q, and D be a dataset collection

containing multiple tables TC , such that each table has a
categorical column KC and a numerical column C. Columns
KQ and KC are the join attributes of tables TQ and TC
respectively, and they may have overlapping sets of values
that can be used to join TQ and TC , resulting in a new
table TQ./C . Using the relational algebra notation, we say that
TQ./C = πk,qk,ck(TQ ./KQ=KC

TC) = {〈k, qk, ck〉 : k ∈
KQ ∩KC}. Finally, the values of numerical columns Q and
C associated with each key k ∈ KQ ∩KC are denoted as qk
and ck respectively. Note that the above definition assumes
that k uniquely identifies one row in the table. However,
real-world data often contain repeated categorical values (as
illustrated in column KC from table TC of Figure 1). In this
example, the repeated key “a” is associated with the set of
values {5.5, 4.5}. In such cases, we are interested in the table
generated after applying an aggregate function (e.g., AVG,
SUM, MAX, etc.) over the values associated with the repeated
values of k, e.g., ca = AVG({5.5, 4.5}) = 5.0. This is the
desired behavior for applications such as data augmentation
for data analysis and machine learning models, where the goal
is to add new columns (features) to an existing training dataset
while maintaining the same number of rows. Figure 1 shows
a complete example of query and candidate tables, along with
their corresponding join table after value aggregations.

T Q

KQ Q
a 6.0
b 4.0
c 2.0
d 3.0
e 0.5
f 4.0
g 2.0

T C

KC C
a 5.5
a 4.5
b 4.0
b 2.0
c 2.5
d 4.0

T Q./C

KQ./C QQ./C CQ./C

a 6.0 5.0
b 4.0 3.0
c 2.0 2.5
d 3.0 4.0

Fig. 1. An example of a query table TQ, a candidate table TC , and the joined
table TQ./C created after joining TQ with TC , and aggregating repeated keys
using the AVG aggregate function. We are interested in finding candidate tables
TC in a collection D such that the after-join correlation between attributes
QQ./C and CQ./C is high.

Our goal is to query a dataset collection D with a query
table TQ to find other tables TC that are not only joinable
with TQ, but that also contain the top-k numerical columns
correlated with Q after a join.

Definition 1 (Top-k Join-Correlation Query [19]). Given TQ
and an integer k > 0, find the top-k joinable tables TC ∈ D
with the highest (after-join) correlations between numerical
columns QQ./C and CQ./C .

Note that while this definition only focuses on high cor-
relation, many applications might also require a high degree
of joinability. Consider, for instance, the problem of relational
data augmentation [21]: the goal is to find new, relevant candi-
date columns to be included as features in a machine learning
model, augmenting the model’s initial feature table with such
columns. When searching large dataset collections for joinable
tables, it is likely that we will encounter large tables that have
only a few coincidental overlapping values (e.g., |KQ| and
|KC | could have both over a thousand rows, but their overlap
could be only a few values, say |KQ ∩KC | = 3). Yet, a few



samples can yield very high correlations even tough they may
not be significant and have very low p-values. In this case, a
new column that is highly correlated with the model’s target
may not improve the quality of the initial model if the overlap
between its initial feature table’s keys and the new column’s
keys is too low. Moreover, this would lead to many missing
data entries in the resulting joined table, and deciding how to
handle them (e.g., through a missing data imputation strategy,
or by simply removing them) is not trivial. Therefore, given
two tables with similar correlation levels, the table with the
highest join key overlap is preferred for retrieval.

To take into account the user preferences regarding join-
ability and correlation, we define a more general class of join-
correlation queries:

Definition 2 (Weighted Top-k Join-Correlation Query).
Given TQ, an integer k > 0, and a user preference weighting
function W (j, r) that combines a joinability score j and
correlation coefficient r, find the top-k joinable tables TC ∈ D
with the highest (after-join) scores assigned by W based on the
correlation r between numerical columns QQ./C and CQ./C
and joinability score j between TQ and TC .

We can define W to express a user’s preferences regarding
the trade-off between joinability and correlation, as follows:

W (j, r) =

{
w if j > 0 (i.e., the tables are joinable)
0 otherwise

(1)

where r is the absolute value of a correlation coefficient such
as Pearson’s correlation,1 j is a joinability score such the
Jaccard Containment (JC), and w is a combination of j and r.

A natural choice for w is a weighted mean of correlation
or joinability. For example, the weighted geometric mean
of a set of real numbers X = {x0, ..., xn} is defined as
(
∏n
i=1 x

αi
i )1/

∑n
i=1 αi , where αi is the weight associated with

each number xi. Applying it to our setting, we get that:

w = (jαjrαr )1/(αj+αr),

where αj is the weight for joinability j and αr is the weight
for correlation r.

Note that we can express the join-correlation query from
Definition 1 using Definition 2 and Equation 1 by defining
αr = 1 and αj = 0, in which case w = r. Similarly, we can
express the “pure” joinable table search objective by defining
αr = 0 and αj = 1, in which case w = j. In the equal-
weights special case where αj = 1 and αr = 1, w becomes
w =

√
j ∗ r.

Defining the weights and combination functions between
correlation and joinability is application-specific and beyond
of the scope this paper. Here, we focus on the version of
correlation queries proposed in [19] (Definition 1), where
w = r, and on an equal-weights case where high correlation
and joinability are equally desirable. Specifically, we propose

1We use the absolute value due to the assumption that both positive and
negative correlations are of interest, but W (j, r) and w can be adjusted
accordingly if this is not case. As we show next, this simplifies the problem.

Fig. 2. An example of the four quadrants, where green points ( ) contribute
to positive correlation and blue points ( ) contribute to negative correlation.

a new hashing and indexing scheme that allows us to retrieve
tables that maximizes an equal-weight weighting function
(details in Section IV). As we show in Section V, this retrieval
method enables not only discovery of tables with both high
correlation and joinability but also significantly improves the
precision and recall when the objective is high correlation only
(w = r), the objective from Definition 1 discussed in [19].

IV. OUR APPROACH

Our approach to efficiently answer weighted top-k join-
correlation queries is based on a combination of sketching and
query processing algorithms for fast top-k document retrieval
[31]. We propose a new hashing scheme that derives terms
to be indexed in an inverted index, which can then be used
to retrieve the correlated tables. Using this hashing scheme,
the task of retrieving correlated tables is reduced to finding
the top-k candidate tables that have the most hashed terms in
common with the query table. This allows us to apply existing
query processing algorithms for document retrieval [31], [42],
[43] to retrieve correlated tables.

A. The QCR hashing scheme

A challenge in applying document retrieval algorithms to
correlated table search is that these algorithms are based
on term matching (discrete values), whereas correlations are
derived from real numbers. To workaround this problem, pre-
vious approaches [19] proposed to retrieve joinable tables by
matching tables using only the values from the join columns.
This approach forces the introduction of an additional re-
ranking step that detects tables that are joinable but do not
contain correlated columns.

To overcome this problem, we propose a new hashing
scheme that allows considering both the join keys and the
numeric values associated with each keys. Our hashing scheme
is based on the correlation estimator known as Quadrant Count
Ratio (QCR) [27]. The QCR estimator is defined as:

rQCR =
n(I) + n(III)− n(II)− n(IV )

N
,

where n(i) is the number of samples located in the
ithquadrant, and N is the total number of samples. This is
illustrated in Figure 2.

The QCR estimator is simple and has multiple properties in
common with popular correlation coefficients (e.g., Pearson’s,



Spearman’s and Kendall’s Tau) [27]. For instance, it yields
numbers in the range [−1, 1]; uncorrelated data has corre-
lation close to 0; and data with perfect positive or negative
correlations according to these measures also have perfect
QCR correlations. Therefore, the QCR not only provides a
good basis to develop a retrieval strategy for these correlation
coefficients but also provides a simple intuition for how to
partition the continuous space of a set of numeric values {x}
into a binary space (e.g., x > 0 and x < 0).

For our problem, finding tables that are both correlated and
joinable, it is not necessary to accurately estimate the rQCR
coefficient for all joinable tables. Instead, to find large positive
correlations, it suffices to find tables that maximize the number
of points in quadrants I and III, while to find large negative
correlations, points need to be in quadrants II and IV.

The absolute rQCR correlation for the joined table TQ./C
is equal to:

|rQCR| =
|N+ −N−|

N∩
, (2)

where N∩ is the number of points after the join (i.e., the
number of rows in the joined table), N+ = n(I) + n(III) is
the number of points in the positive quadrants, N− = n(II)+
n(IV ) is the number of points in the negative quadrants.

Note that Equation 2 violates the non-negative monotonic-
ity property required by the top-k query processing algo-
rithms [31], [46]: encountering a point that lies in the quad-
rants II and IV could lead to a decrease of the current top-k
table scores. However, we can show that to maximize |rQCR|,
it suffices to individually maximize N+

N∩ or N−

N∩ .
To see this, first observe that, by definition, N∩ = N+ +

N−. Thus, N− = N − (N+) and so by maximizing N+ we
are also minimizing N−. Substituting N− = N∩ − N+ (or
N+ = N∩ −N−) in the equation for rQCR, we get that:

rQCR = 2
N+

N∩
− 1 and rQCR = −

(
2
N−

N∩
− 1

)
.

In these equations, it is clear that rQRC > 0 when N+

N∩ > 1
2

and that the absolute correlation |rQCR| assumes maximum
value when N+

N∩ is maximized or minimized. Moreover, max-
imizing |rQCR| is equivalent to maximizing max(N

+

N∩ ,
N−

N∩ ).
In other words, we can split the problem of finding tables

with highest correlation into two sub-problems of finding the
top-k tables that have the maximum between N+

N∩ and N−

N∩ ,
which are monotone functions. In what follows, we propose a
hashing scheme that allows us to achieve this goal.

The QCR hashing scheme builds on the sketching strategy
proposed for join-correlation estimation [19]. For each table
TC = 〈KC , C〉, we first build a correlation sketch L〈KC ,C〉.
The sketch is then used to derive a set of terms TC to
represent the table in the inverted index. To make the paper
self-contained, we will first briefly describe how to build these
sketches (Section IV-B), and then we will describe how to
compute the QCR index terms from sketches (Section IV-C).

B. Building the correlation sketches

A key idea behind correlation sketches is to use hashing
techniques to consistently choose the keys from each table
that are included in the sketch. We use two different hashing
functions, h and hu, to create sketch L〈KC ,C〉. The first of
them, h, is a collision-free hash function that maps the key
values k ∈ KC onto distinct integers, uniformly at random.
Given that the hashed keys h(k) are unique, they are used
as tuple identifiers in the sketch. The second function, hu,
maps the hashed keys h(k) uniformly and randomly onto
the unit range [0, 1]. This allows for the selection of a small
sample of n tuples 〈h(k), ck〉 from a table TC = 〈KC , C〉.
In other words, L〈KC ,C〉 includes the n tuples 〈h(k), ck〉 with
the minimum values of hu(k), i.e., L〈KC ,C〉 = {〈h(k), ck〉 :
k ∈ min(k, hu(k))}, where min is a function that returns a
set containing the keys k with the n smallest values hu(k).
In the case where the set {k} contains repeated keys, the
values ck can simply be aggregated using aggregate functions
as described in Section III.

Building sketches effectively reduces large tables to a
sample that contains only n tuples, while guaranteeing with
high probability that different sketches will have similar sets
of hashed keys h(k) if their original tables are joinable.
Moreover, a pair of sketches L〈KQ,Q〉 and L〈KC ,C〉 can be
used to compute correlations by creating joined sketch LQ./C
and applying any correlation estimator [19].

C. Building the QCR index terms

Given the sketch for table TC , we derive a set of terms
TC = {tk} to represent TC in the inverted index. Since we
aim to estimate the ratio of points that fall into each quadrant
after the join between tables TQ and TC , our term hashing
scheme must satisfy two constraints. Given two sets of hashed
terms TQ and TC , derived from tables TQ and TC respectively,
any pair of hashed terms ti ∈ TQ and tj ∈ TC must be equal
only if (1) their original join key values are the same, and (2)
their numerical values belong to the same quadrant. To satisfy
these constraints, we derive index terms tk as a function of
the set of numerical values {ck} ∈ L〈KC ,C〉 and of the hashed
key h(k). Specifically, we compute tk as:

tk =

{
h(h(k)⊕+1) if ck − µc > 0

h(h(k)⊕−1) if ck − µc < 0
(3)

where µc is the average of {ck}, and ⊕ denotes concatenation
of a hash h(k) and the quadrant ID. Points which ck−µc = 0
do not contribute to correlation and are ignored.

Note that µc is a reference point used to partition the
quadrants. As illustrated in Figure 3, this operation can be
seen as a translation of the coordinate system to be centered
at zero (mean centering), and most correlation measures are
not affected by this transformation [19].

In the example of Figure 3, our hashing scheme assigns
the same hash value to 〈b, cb〉 ∈ C and 〈b, qb〉 ∈ Q because
their join key is b, and both cb and qb are greater than µc
and µq , respectively. However, it would not assign the same



Fig. 3. An example of mean centering for two tables TC and TQ. Letters
represent join keys k and the positions along the lines represent values ck .
Yellow circles ( ) mean that the keys do not join. Green circles ( ) denote
that the keys join and are located in a “positive quadrants” (I and III), and
Dark blue circles ( ) mean that the rows join and are in “negative quadrants”
(II and IV). A projection of the table generated after the join onto the plane
is shown in Figure 2.

hash value to cb and qb if, for example, cb were less than µq .
Moreover, note that the terms generated for j and h would not
match the terms for any other point because their key values
are different, and we assume that h is collision-free.

It is worth noting that we estimate µc using the data from
the sketches (i.e., before the join), which assumes that the
mean does not change significantly after the join. While this
assumption may not always hold, it is a required assumption
because we do not have access to necessary data to compute
the after-join mean at indexing time (as it depends on the
query table). A shift in the mean after the join may cause some
terms that belong in the same quadrant to not match. However,
this affects tables with high and low correlation equally.
Moreover, by using correlation estimates computed using the
sketches, we can correct possible errors in a reranking phase.
In practice, our experimental evaluation (Section V) shows that
this approach works well and attains high recall values.

In summary, to index a table TC we first compute its sketch
L〈KC ,C〉 and then use Equation 3 to compute terms TC , which
are ultimately used to represent the table TC in the QCR
inverted index.
D. Querying the QCR index

When a table TQ is provided as a query, we apply a process
similar to the one described in Section IV-C to query the
inverted index. We start by constructing a sketch L〈KQ,Q〉 and
then generate terms to query the index. Note that querying
the index using terms TQ returns only positive correlations
(r > 0). To see this, consider the mean-centered example of
C and Q at the bottom of Figure 3. If a user queries the index
using the terms TC generated for TC , a comparison with terms
TQ would only match the hashes for the (green) join keys a, b,
c, d, e, and f, which have the same join keys and are on the
same side (positive/negative) of the mean-centered line. The
points of a negatively correlated column (r < 0) projected
onto the plane would lie mostly on quadrants II and IV, the
opposite of our query terms TQ.

If one is also interested in retrieving negative correlations,
an additional step is therefore necessary. In this case, we
generate two sets of terms: T+

Q is used to retrieve positive
correlations, and T−Q , retrieves negative correlations. We set
T+
Q to be equal to TQ, and we compute T−Q using the

additive inverse of numerical values {qk} ∈ L〈KQ,Q〉 —
i.e., we apply a transformation to {qk} that multiplies all
of its elements by −1. We show in our theoretical analysis
(Section IV-F) that the size of the overlaps s+ = |T+

Q ∩ TC |
and s− = |T−Q ∩TC | are roughly proportional to N+

N∩ and N−

N∩ ,
respectively, within some error bounds. Therefore, to retrieve
positively and negatively correlated tables, we can issue a
disjunction of two queries — one for each set of terms — and
keep the top-k tables with highest scores of either s+ or s−.
In other words, we find the top-k tables that maximize the
score s = max(s+, s−).

E. Implementation Details

We implemented our algorithms in Java, and we used the
Apache Lucene library [47] to build the indexes and queries.
We construct two queries of type BooleanQuery, one for
T−Q and another for T+

Q . They are then combined in a single
DisjunctionMaxQuery [48], which picks the top-k tables
with maximum value of either T−Q or T+

Q . This allows both
queries to be efficiently processed together using Lucene’s
implementation of the Block-Max WAND algorithm [43].

F. Theoretical Analysis

We provide a theoretical analysis to justify our heuristic and
clarify the assumptions behind it. We analyze the s+ and s−

scores and show that the estimator s+/n provides a reasonable
estimate for N+/N∩. More formally, we show that:

Lemma 1. The following bounds hold for a score s+ com-
puted using the QCR hashing scheme and a sketch of size n:

N+

N∩
ρ ≤ E

[
s+

n

]
≤ 2

N+

N∩
ρ (4)

where ρ = N∩

N∪ is the Jaccard similarity between KQ and KC .

To compare our approach with the approach from [19], which
we refer to as CSK, we also extend our analysis to the scores
produced by their method (as both scores are counts of hash
collisions). Before presenting our analysis, we describe CSK.
The CSK indexing scheme. While our QCR approach uses
the set of hashes computed using Equation 3, CSK uses
hashes derived only from the join keys. More specifically, it
recommends constructing correlation sketches for candidate
tables, and then indexing them using their set of hashed keys
TC = {h(k) ∈ L〈KC ,C〉}. At query time, it constructs a
sketch L〈KQ,Q〉 for the query table, which is used to create
the query term set TQ = {h(k) ∈ L〈KQ,Q〉}. The queries
find the top-k tables with highest overlap of hashed keys
s∩ = |TQ∩TC |. This step retrieves highly-joinable tables. The
final step re-ranks the retrieved tables using the correlation
estimate obtained using the complete sketches L〈KC ,C〉 and
L〈KC ,C〉, which then places correlated tables at the top of the
ranked list. This indexing approach based on the hashed keys
of sketches (CSK) was presented informally in [19]. In what
follows, we present an analysis of s∩, which is part of the
contributions of this paper.



Proof of Lemma 1. Let LA and LB be the sketches com-
puted for the tables TA and TB , respectively. Moreover, let
U = {ki : h(ki) ∈ LA ∪ LB} = {k1, k2, ..., kn, ..., k|LA∪LB |}
where i denotes the index of ki in the order induced by the
hashing function h. Let also TA and TB denote the set of
hashes computed using either the QCR or the CSK strategies
from LA and LB , respectively. Finally, T = {t1, ..., t|LA∪LB |}
denotes the set of hashes computed for each ki. We can now
define a collection of Bernoulli random variables that represent
hash collisions between TA and TB :

ui =

{
1 if ti ∈ TA ∩ TB
0 otherwise.

We will first analyze the expected value of each ui indepen-
dently. Then, we will calculate the sum s =

∑|LA∪LB |
i=1 ui and

analyze its expected value E[s]. For convenience, we will also
denote s(a, b) =

∑b
i=a ui.

Both scores s+ and s∩ are summations as in s, with their
only difference being their probability of collisions. Note that
ti ∈ TA∩TB if and only if the keys used to compute the hashes
collide in their original sets and if the hashes are selected for
inclusion in both sketches. For instance, in CSK the strategy,
ti ∈ TA ∩ TB iff ki ∈ KA ∩KB and ki ∈ LA and ki ∈ LB .

The probabilities the keys being included in the sketches
(i.e., P{ki ∈ LA and ki ∈ LB}) depend on the sketch size n
and are not uniform for the set of all i’s. In fact, as proven
in [49], P{ki ∈ LA and ki ∈ LB} = 1 for all i ≤ n
when sketches have size n, given that P{ki ∈ LA} = 1
and P{ki ∈ LB} = 1. Thus, we divide the analysis
in two cases: {u1, ..., un} and {un+1, ..., u|LA∪LB |}. First,
note that s can be decomposed into the sum of the parts:
s = s(1, n) + s(n + 1, |LA ∪ LB |). Then, due to linearity of
expectation, we have that:

E[s] = E[s(1, n) + s(n+ 1, |LA ∪ LB |)]
= E[s(1, n)] + E[s(n+ 1, |LA ∪ LB |)]

= E

[
n∑
i=1

ui

]
+ E

|LA∪LB |∑
i=n+1

ui


=

n∑
i=1

E[ui] +
|LA∪LB |∑
i=n+1

E[ui]

Each ui is a Bernoulli random variable, thus we know that
E[ui] = P{ui = 1}. Let I denote the event that ki is included
in both sketches and C denote the event that a hash collision
happens. Then, we have that: P{ui = 1} = P{I | C} ·P{C}.
Using the facts that the probability of inclusion is 1 for i ≤ n
and P{C} is constant for all i, we get:

E[s(1, n)] =
n∑
i=1

P{I | C} · P{C}

=

n∑
i=1

1 · P{C}

= nP{C} (5)

For the remaining i ∈ {n+1, |LA∪LB |}, we use the the fact
that P{I|C} can be at most 1 to get the upper bound:

E[s(n+ 1, |LA ∪ LB |)] =
|LA∪LB |∑
i=n+1

P{I | C} · P{C}

≤
|LA∪LB |∑
i=n+1

1 · P{C}

≤ nP{C} (6)

Combining Equations 5 and 6, we get that:

nP{C} ≤ E[s] ≤ nP{C}+ nP{C}
nP{C} ≤ E[s] ≤ 2nP{C} (7)

P{C} ≤ E
[ s
n

]
≤ 2P{C} (8)

The final step is to obtain the collision probabilities for
each hashing scheme. For CSK, we have that P{C} = N∩

N∪

and whereas for QCR, P{C} = N+

N∪ . Combining these with
Equation 8, we obtain the following bounds:

N∩

N∪
≤ E

[
s∩

n

]
≤ 2

N∩

N∪
for CSK, and (9)

N+

N∪
≤ E

[
s+

n

]
≤ 2

N+

N∪
for QCR. (10)

To get the results from Lemma 1, note that the following
equality holds: N+

N∪ = N+

N∩
N∩

N∪ .

G. Discussion

As shown earlier, using a QCR index is sufficient to retrieve
correlated columns in a single step. In contrast to CSK, which
retrieves tables that roughly maximize the Jaccard similarity
(Equation 9), our QCR maximizes both the Jaccard similarity
and the ratio N+

N∩ . Therefore, our method is a heuristic that
uses the Jaccard similarity as a proxy to Jaccard containment.

Note, however, that our hashing scheme is complementary
to the sketches proposed in [19] and they can be used in
a cascading fashion: one can first retrieve tables using the
QCR index, as described in Section IV-C, and then pass the
retrieved candidates to another layer that re-ranks the candidate
tables using estimates produced by correlation sketches [19].
At this re-ranking stage, one can estimate any correlation
measure (e.g., Pearson’s, Spearman’s, and others) and the
Jaccard Containment. Therefore, the re-ranking can optimize
any weight combination as discussed in our Definition 2.

In addition to re-ranking using direct correlation estimates
computed from sketches, additional information stored at
indexing time can be used to further improve the ranking.
For instance, scoring functions that take intro account the
risk of estimation error could be used to avoid placing false-
positives in the top of the ranked list (as done in [19]). Note,
however, that these improvement are only applicable to the re-
ranking phase (i.e., they are orthogonal to the approach and
experimental results we present in this paper), and while they
may improve final ranking, they cannot impact the retrieval
recall (which is one to the main benefits of QCR indexes).



In our experiments (Section V), we consider both the single-
stage approach as well as the cascading approach. We show
that QCR indexes improve both the ranking accuracy and
recall compared to the CSK approach [19]. Moreover, we
show that the QCR-based hashing works well for retrieving
candidate correlated tables according to a different correlation
estimator such as Pearson’s.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Dataset Collections. Our evaluation uses one synthetic and
one real-world collection. Each of them is composed of two
distinct sets of tables which we refer to as query set and corpus
set. We describe these collections in more detail below.
(1) Synthetic Table Corpus (STC). In order to have more
control of the data properties, we automatically generated a
corpus containing tables with varying degrees of joinability
and correlation. Our corpus generation method proceeds as
follows. We first generate 1,000 table queries by generating
unique keys and drawing numbers from a Gaussian distribution
with parameters N (0, 1). Next, for each query, we synthet-
ically generate 100 candidate tables with high correlation
and 400 with low correlation with varying levels of Jaccard
containment between their keys and the keys of the query
table. Specifically, we draw the correlation level r, uniformly
at random, from the the range [1.0, 0.25] or [−1.0,−0.25]
for high-correlation tables, and from the range (0.25,−0.25)
for low-correlation tables. The Jaccard Containment is drawn
from random and uniformly from [0.1, 1.0]. The final table
collection includes 1,000 queries and 500,000 candidate tables,
totaling approximately 250 GB of storage.
(2) NYC Open Data (NYC). The tables from this dataset
contain data published by New York City agencies and their
partners [50]. We used a snapshot that includes 1,505 different
CSV files with a varying number of columns. From each file,
we generated 289,487 two-column tables (i.e., 〈KC , C〉) by
extracting all pairs of categorical and numerical data columns
from each file. A brute-force approach to estimate join-
correlations between all pairs of these tables would require
over 41 billion join and correlation computations. To generate
a query set, we randomly selected 1,000 tables. The remaining
tables are assigned to the corpus set.
Evaluation Metrics. Ideally, table retrieval approaches should
be able to find the largest number possible of correlated tables
and, at the same time, place highly correlated and highly
joinable tables at the top of list. To measure different aspects
of retrieval quality, we use the following evaluation metrics:
(1) Normalized Cumulative Gain (nDCG) [51]: measures the
ability of placing highly relevant items at the top of the
ranking. As a relevance measure, we use the actual absolute
Pearson’s correlation (|r|) between the numerical columns of
the query and the candidate tables after a full table join. There-
fore, nDCG values assess the retrieval quality with respect to
the correlation only objective (αr = 1 and αj = 0). We report
the nDGC at positions 5, 10, and 50 of the ranked list (referred
to as nDCG@5, nDCG@10, nDCG@50, respectively).

(2) Recall: measures the percentage of relevant tables retrieved
relative to the total of relevant tables. Recall is also computed
with respect to correlation |r| only (i.e., αj = 0, αr = 1)).
We report the recall considering different correlation levels as
relevant: |r| > 0.25, |r| > 0.50, and |r| > 0.75. In order to
compute the recall, we pooled all retrieved candidate tables
by merging the lists associated to all retrieval strategies, and
then reported the fraction of relevant tables retrieved by each
specific retrieval strategy compared to all pooled tables.
(3) Average Jaccard Containment (Avg. JC) Similarity: to
measure the ability of prioritizing highly joinable tables, we
report the average JC similarity at different positions of the
ranked list (i.e., αj = 1, αr = 0). The JC similarity is
computed over the join keys of the complete tables, i.e.,
JC(KQ,KC) = |KQ∩KC |/|KQ|, where KQ and KC are the
sets of join keys of the original tables TQ and TC respectively.
We report the average JC at positions 5, 10, and 50.
(4) Average Weighted Means (AAM, AGM, AHM): To evaluate
queries with respect to weight preferences (Definition 2), we
compute the weight w for the candidate table at each position
in the ranked list, and then calculate the average from the first
position up to a maximum position i. We use as combination
functions the arithmetic, geometric and harmonic means (de-
noted as AAM@i, AGM@i, and AHM@i, respectively).
(5) Harmonic Mean (HM): We also use the harmonic mean
to evaluate how good each retrieval method is with respect to
multiple metrics. The HM is defined as HM(a, b) = 2ab

a+b ,
where a and b are scores for two different evaluation metrics
(e.g., nDCG, Recall, or Avg. JC).

All these metrics are in the interval [0, 1], and larger values
are preferred over smaller values. We use the HM to combine
metrics because it is intuitive and equivalent to the well-known
F1-score, which also uses the HM to quantify the trade-offs
between precision and recall in binary classification tasks.
When compared to the arithmetic (AM) and the geometric
(GM) means, the HM is strictly smaller. This means that HM
scores are “harsher” than if we were using the GM to evaluate
an equal-weight linear combination of Avg. JC and nDCG.
Baselines and Parameter Settings. We compare our ap-
proach against the CSK approach from [19] under multiple
parameter settings. As discussed in Section IV-F, this type
of index can yield two baselines: the first, which retrieves
and ranks tables according to the score s∩ (referred to as
CSK-Overlap), roughly optimizes for finding tables with high
joinability (αr = 0, αj = 1); the second, which ranks retrieved
tables using sketch estimates (referred to as CSK-Correlation),
optimizes the final ranking for correlations (αr = 1, αj = 0).

Similarly, we consider two possible ranking strategies for
our QCR indexes: ranking tables based on the overlap of
the QCR keys (namely, QCR-Overlap), which simultaneously
prioritizes joinability and correlations (αr = 1, αj = 1);
and a second strategy that re-ranks the retrieved tables us-
ing estimates, computed using the sketches (namely, QCR-
Correlation). While QCR-Correlation roughly optimizes for
both correlation and joinability in the first step, the re-ranking
step optimizes for correlation (αr = 1, αj = 0).



TABLE I
RANKING SCORES FOR DIFFERENT INDEX AND RANKING PARAMETERS ON THE NYC OPEN DATA (NYC) COLLECTION.

Parameters nDCG Recall Harmonic Mean (nDCG, Recall)

n top-k index ranking @5 @10 @50 r > .25 r > .50 r > .75
r > .5

@10

r > .5

@50

r > .75

@10

r > .75

@50

256

50

CSK
Overlap 0.386 0.401 0.474 0.378 0.357 0.353 0.330 0.368 0.308 0.344

Correlation 0.766 0.734 0.582 0.378 0.357 0.353 0.412 0.400 0.388 0.375

QCR
Overlap 0.754 0.732 0.743 0.487 0.590 0.672 0.630 0.637 0.680 0.686

Correlation 0.853 0.845 0.780 0.487 0.590 0.672 0.663 0.649 0.714 0.697

100

CSK
Overlap 0.386 0.401 0.474 0.606 0.540 0.496 0.422 0.476 0.385 0.433

Correlation 0.794 0.776 0.724 0.606 0.540 0.496 0.568 0.573 0.509 0.516

QCR
Overlap 0.754 0.732 0.743 0.769 0.851 0.897 0.781 0.788 0.805 0.812

Correlation 0.851 0.853 0.865 0.769 0.851 0.897 0.837 0.850 0.855 0.870

512

50

CSK
Overlap 0.380 0.397 0.472 0.378 0.357 0.353 0.326 0.367 0.305 0.343

Correlation 0.776 0.743 0.585 0.378 0.357 0.353 0.413 0.400 0.390 0.375

QCR
Overlap 0.759 0.737 0.747 0.488 0.596 0.678 0.636 0.642 0.685 0.691

Correlation 0.866 0.858 0.787 0.488 0.596 0.678 0.671 0.655 0.723 0.704

100

CSK
Overlap 0.380 0.397 0.472 0.603 0.542 0.493 0.417 0.475 0.379 0.430

Correlation 0.808 0.790 0.732 0.603 0.542 0.493 0.573 0.575 0.510 0.515

QCR
Overlap 0.759 0.737 0.747 0.770 0.862 0.905 0.788 0.795 0.810 0.817

Correlation 0.868 0.870 0.876 0.770 0.862 0.905 0.849 0.860 0.866 0.879

1024

50

CSK
Overlap 0.381 0.397 0.472 0.380 0.356 0.354 0.326 0.366 0.306 0.343

Correlation 0.781 0.749 0.586 0.380 0.356 0.354 0.413 0.399 0.392 0.376

QCR
Overlap 0.763 0.742 0.749 0.490 0.594 0.680 0.637 0.642 0.689 0.694

Correlation 0.870 0.860 0.788 0.490 0.594 0.680 0.670 0.654 0.723 0.706

100

CSK
Overlap 0.381 0.397 0.472 0.603 0.540 0.496 0.416 0.473 0.379 0.430

Correlation 0.815 0.797 0.736 0.603 0.540 0.496 0.571 0.573 0.513 0.517

QCR
Overlap 0.763 0.742 0.749 0.772 0.863 0.909 0.791 0.797 0.813 0.820

Correlation 0.873 0.874 0.879 0.772 0.863 0.909 0.852 0.862 0.870 0.883

Note that the re-ranking strategies (CSK-Correlation and
QCR-Correlation) incur a small additional computational over-
head, as they need to load the sketches from the storage,
compute estimates, and then re-order the table candidates
using the Pearson’s correlation estimates. They also require
an additional storage overhead for storing the sketches. For a
collection with d documents and sketches of size n, they need
d ∗ n ∗ (sizeof(h(k)) + sizeof(c)) bytes in addition to
storage required for the inverted index.

Besides the aforementioned index types and ranking strate-
gies, we also evaluate the effect of various parameters such as
sketch size (the larger the sketch size, the larger the amount
of storage space needed and the larger the index size), and the
number of candidate tables retrieved (top-k). These parameters
are applicable to both QCR and CSK indexes.

B. Retrieval of Highly Correlated Tables

Our first experiment focuses on retrieval quality with respect
to correlations (αr = 1, αj = 0) (same as in [19]). We built
an inverted index for several combinations of index parameter
settings and data collections, and then used all tables in the

query sets to issue queries against the index. We report the
evaluation metric scores for the NYC and STC collections in
Tables I and II respectively.

1) Ranking Accuracy: The results show that our QCR-
based methods significantly improve over the baseline meth-
ods. The top performing method, QCR-Correlation, substan-
tially increases ranking quality in terms of nDCG scores
across all possible parameter settings, with particularly good
results at the top-5. We note also that the QCR-Overlap
method achieves nDCG scores that are very close to the best-
performing approach (QCR-Correlation), suggesting that our
indexing and retrieval approach provides scores that are well-
correlated with the Pearson’s correlation, even though the QCR
estimator is only a crude estimator of this coefficient.

The improvements of QCR-Correlation over CSK-
Correlation are due to the base QCR retrieval strategy, which
makes more correlated tables available to the re-ranking
strategy, allowing the re-ranking phase to place more relevant
tables at the top of the ranked list. In addition, because the
QCR index tends to return items that are highly joinable
(as shown in Section V-C), the accuracy of the correlation



TABLE II
RANKING SCORES FOR DIFFERENT INDEX AND RANKING PARAMETERS ON THE SYNTHETIC TABLE CORPUS (STC) COLLECTION.

Parameters nDCG Recall Harmonic Mean (nDCG, Recall)

n top-k index ranking @5 @10 @50 r > 0.25 r > 0.50 r > 0.75
r > .50

@10

r > .50

@50

r > .75

@10

r > .75

@50

256

50

CSK
Overlap 0.133 0.137 0.196 0.234 0.208 0.188 0.149 0.199 0.138 0.184

Correlation 0.839 0.708 0.373 0.234 0.208 0.188 0.319 0.265 0.290 0.242

QCR
Overlap 0.921 0.900 0.815 0.747 0.788 0.822 0.839 0.801 0.857 0.817

Correlation 0.994 0.987 0.847 0.747 0.788 0.822 0.875 0.816 0.895 0.833

100

CSK
Overlap 0.133 0.137 0.196 0.471 0.420 0.379 0.190 0.263 0.182 0.252

Correlation 0.936 0.887 0.582 0.471 0.420 0.379 0.567 0.486 0.523 0.453

QCR
Overlap 0.921 0.900 0.815 0.931 0.941 0.951 0.919 0.873 0.924 0.877

Correlation 0.998 0.996 0.957 0.931 0.941 0.951 0.967 0.949 0.972 0.954

1024

50

CSK
Overlap 0.135 0.141 0.197 0.235 0.209 0.188 0.152 0.201 0.140 0.185

Correlation 0.841 0.710 0.374 0.235 0.209 0.188 0.320 0.266 0.290 0.242

QCR
Overlap 0.927 0.906 0.849 0.798 0.832 0.860 0.866 0.840 0.881 0.853

Correlation 0.995 0.991 0.879 0.798 0.832 0.860 0.903 0.854 0.919 0.868

100

CSK
Overlap 0.135 0.141 0.197 0.471 0.420 0.377 0.194 0.264 0.186 0.253

Correlation 0.936 0.888 0.583 0.471 0.420 0.377 0.567 0.487 0.522 0.452

QCR
Overlap 0.927 0.906 0.849 0.976 0.981 0.986 0.942 0.910 0.944 0.912

Correlation 0.999 0.999 0.985 0.976 0.981 0.986 0.990 0.983 0.992 0.985

TABLE III
AVERAGE WEIGHTED MEANS AT DIFFERENT RANK POSITIONS FOR DIFFERENT PARAMETERS ON THE NYC OPEN DATA (NYC) COLLECTION.

n top-k index ranking AAM@5 AAM@10 AAM@k AGM@5 AGM@10 AGM@k AHM@5 AHM@10 AHM@k

512

50

CSK
Overlap 0.185 0.181 0.159 0.093 0.090 0.075 0.069 0.066 0.053

Correlation 0.296 0.266 0.159 0.135 0.123 0.075 0.099 0.089 0.053

QCR
Overlap 0.306 0.280 0.226 0.139 0.125 0.094 0.101 0.089 0.063

Correlation 0.326 0.306 0.226 0.140 0.130 0.094 0.099 0.091 0.063

100

CSK
Overlap 0.185 0.181 0.146 0.093 0.090 0.066 0.069 0.066 0.045

Correlation 0.301 0.276 0.146 0.129 0.119 0.066 0.091 0.084 0.045

QCR
Overlap 0.306 0.280 0.201 0.139 0.125 0.081 0.101 0.089 0.052

Correlation 0.320 0.303 0.201 0.128 0.121 0.081 0.087 0.082 0.052

estimates produced by the sketches might also significantly
improve: the more joinable the sketches, the larger the sample
size for correlation estimation.

Note also that while it may seem that the gap between CSK
and QCR is not very large for top-5 results, CSK is expected
to lead to the discovery of correlated tables only eventually.
The event of finding a correlated columns when optimizing
for JC is close to random [19]. Thus, the probability of such
events is highly dependent on the distribution of the number
of correlated tables in the collection. In large collections with
very few correlated tables, it will be much harder to find
correlated tables using CSK index than in smaller collections.

For instance, notice the big change in recall between the
STC and NYC collections, which have different underlying
generating processes. In the STC collection which has approx-

imately 100 tables with r > 0.25 and 400 tables with r < 0.25
for each query, QCR is able to retrieve twice as many tables
as CSK (recall of 93.1% compared to 47.1%, respectively) for
k = 100 and n = 256. For smaller k = 50, the difference is
more than 3 times larger (74.7% compared to 23.4%).

2) Recall: The results also show that QCR indexes dra-
matically improve the recall of correlated columns. A partic-
ularly interesting trend is that, while retrieving columns by
overlap of correlation sketch keys (CSK-Overlap and CSK-
Correlation), the recall progressively decreases as we increase
the correlation level. The opposite happens for the QCR index:
the recall becomes better for higher correlation levels. This
confirms that QCR indexes are particularly good at retrieving
highly-correlated tables (r > 0.75).

Another interesting result is that retrieving a longer list of



TABLE IV
AVG. JC SCORES ON THE STC TABLE COLLECTION.

nDCG Avg. JC HM(nDCG, Avg. JC)

@5 @50 @5 @50 @5 @50

CSK-Overlap 0.133 0.197 0.994 0.954 0.215 0.322

CSK-Correlation 0.936 0.582 0.908 0.908 0.921 0.707

QCR-Overlap 0.925 0.835 0.925 0.882 0.924 0.857

QCR-Correlation 0.999 0.973 0.749 0.827 0.854 0.894

candidate tables yields better results than increasing the sketch
sizes. We can see this, for instance, by comparing the Recall
scores obtained by the QCR index in the NYC collection:
retrieving the top-100 tables using a sketch size of n = 256
leads to scores in the range [0.769, 0.897], while retrieving
top-50 tables with n = 1024 only leads to scores in the range
[0.490, 0.680]. Note that this is a two-fold increase in the top-
k compared to a four-fold increase in the sketch size n. This
suggests that increasing the number top-k retrieved tables has
a higher impact on recall than increasing the sketch size n. As
we will show in our efficiency evaluation, this is particularly
good because an increase in the sketch size results in a larger
number of query terms, which has a bigger impact on query
processing times than increasing the number of top-k results.

The results also indicate that QCR indexes are more space-
efficient than CSK indexes: a comparison of different sketch
sizes (n = 256 vs. n = 1024) for the same number of top-k
tables (top-k=100) shows that QCR attains better recall with
smaller sketches. For example, the best recall for r > 0.75
attained by CSK is 0.496 (with the settings n = 1024 and
k = 100), whereas QCR is able to attain a higher recall of
0.897 (with n = 256 and k = 100). This suggests that QCR
indexes need less than 1/4 of the storage size needed by CSK
indexes (due to smaller sketches) to achieve the same recall.

3) Overall Ranking: Besides nDCG and Recall, we also
report the harmonic mean of nDCG and Recall scores for
different ranked list positions and correlation levels in Ta-
bles I and II. These results, along with results from Sec-
tions V-B1 and V-B2, confirm that the QCR-based retrieval
strategies are able to achieve a better overall ranking quality
using smaller sketch sizes.

C. Balanced Retrieval of Correlated & Joinable Tables

So far, we discussed ranking quality in terms of accuracy
and recall. We now consider the ability of our QCR index
to place tables that are simultaneously highly correlated and
joinable at the top of the ranked list. For this evaluation, we
use as w the weighted mean of the Jaccard Containment (j)
and the absolute Pearson’s correlation (r). We compute w for
the candidate table at each position in the ranked list, and then
calculate the average from the first position up to a maximum
position i. We denote the arithmetic, geometric and harmonic
means as AAM@i, AGM@i, and AHM@i, respectively. The
absence of @i means that the average is over all top-k retrieved
tables. The results are reported in Table III (we only show n =

TABLE V
AVG. JC SCORES ON THE NYC TABLE COLLECTION.

nDCG Avg. JC HM(nDCG, Avg. JC)

@5 @50 @5 @50 @5 @50

CSK-Overlap 0.303 0.374 0.223 0.190 0.173 0.185

CSK-Correlation 0.622 0.570 0.180 0.175 0.216 0.209

QCR-Overlap 0.582 0.570 0.218 0.185 0.239 0.213

QCR-Correlation 0.658 0.666 0.170 0.168 0.208 0.210

512 because other settings are similar). They confirm that QCR
indexes lead to better performance than CSK indexes, specially
when the size of the ranked list grows. Also, the correlation
sketch estimates improve the performance regardless of the
index, but the best results are achieved when QCR index is
used because it makes more correlated tables available to the
re-ranking step.

We also computed the Average Jaccard Containment (Avg.
JC) attained at different positions of the ranked list, as well
as the harmonic mean between the Avg. JC and nDCG. The
results are reported in Tables IV and V (we also include nDCG
values for an easier comparison). We only report scores for
sketch size n = 512 and for queries that retrieve the top-100
candidate tables. However, other settings led to similar results.

As expected, the CSK-Overlap strategy is the best perform-
ing in terms of Avg. JC in both table collections. Moreover,
while the QCR-Correlation is the best strategy in terms of
nDCG, its Avg. JC is considerably lower than other methods’.
This is not surprising as this strategy only uses the correlation
estimate in the re-ranking stage. In contrast, QCR-Overlap is
able to maintain a good balance between correlation and join-
ability: its Avg. JC scores are not too far below when compared
to the CSK-Overlap strategy, nor are its nDCG scores. As a
result, QCR-Overlap is able to obtain the best balance between
the two metrics as confirmed by their harmonic mean.

Note also the difference between the overall Average JC
scores for different table collections: Avg. JC tends to be
higher for the synthetic collection (STC) compared to smaller
values in the NYC collection. This difference is due to the
underlying data generation process of the collections. In the
STC collection we generate the tables in such a way that there
are always joinable candidates for every query. In contrast, in
the NYC collection, where we select query tables randomly
from the data, we notice a significant skew in the distribution
of JC for the retrieved tables, with some query tables having
few joinable columns. Nonetheless, we can see that the general
trends in the results are still the same, with QCR-Overlap
attaining the best scores in terms of HM(nDCG, Avg. JC).

D. Performance Evaluation

To evaluate performance, we executed all queries in the
query set and measured their total execution time, including
the time to create sketches (and terms T+

Q and T−Q ) for
the query table, processing the query, reading the candidate
tables’ sketches and re-ranking the results based on sketch



TABLE VI
RUNNING TIME FOR DIFFERENT PARAMETER SETTINGS ALONG WITH

THEIR RANKING SCORES ON THE NYC COLLECTION.

nDCG/Rec nDCG/JC Time

index ranking top-k n @10, r > 0.75 @10 Avg.

1 QCR Correlation 100 1024 0.870 0.136 28.554

2 QCR Correlation 100 512 0.866 0.132 19.704

3 QCR Correlation 100 256 0.855 0.127 13.944

4 QCR Overlap 100 1024 0.813 0.155 27.763

5 QCR Overlap 100 512 0.810 0.153 19.492

6 QCR Overlap 100 256 0.805 0.151 13.568

7 QCR Correlation 50 512 0.723 0.148 18.431

8 QCR Correlation 50 1024 0.723 0.150 26.963

9 QCR Correlation 50 256 0.714 0.144 12.940

10 QCR Overlap 50 1024 0.689 0.155 26.689

11 QCR Overlap 50 512 0.685 0.153 18.102

12 QCR Overlap 50 256 0.680 0.151 12.721

13 CSK Correlation 100 1024 0.513 0.139 17.033

14 CSK Correlation 100 512 0.510 0.136 12.488

15 CSK Correlation 100 256 0.509 0.131 9.837

16 CSK Correlation 50 1024 0.392 0.148 14.132

17 CSK Correlation 50 512 0.390 0.146 10.700

18 CSK Correlation 50 256 0.388 0.143 8.655

correlation estimates (when applicable). Given that Lucene’s
implementation makes heavy use of caching and memory
mapping mechanisms to speed up query execution, we ran
all queries 5 times and discarded the first execution. We
omit query times for the synthetic collection. While their
query times are higher due to their query distribution size,
we observed similar results.

In Table VI, we report the average query time for all queries
in the NYC collection along with the ranking metric scores
obtained by the same parameter settings. Results are sorted
by the harmonic mean between nDCG@10 and Recall at
r > 0.75, in decreasing order, to make it easier to find the
running time of the best performing settings. In general, we
can see that the higher the sketch size n and the number of
retrieved candidates, the higher the running time. Moreover,
we can see that, for a fixed top-k and sketch size n, the query
times for QCR methods are roughly twice as high as for their
CSK counterparts. This is not surprising, since QCR queries
need to process twice as many terms (in order to retrieve
positive and negative correlations) as CSK queries. Another
interesting result is that even the settings of the QCR methods
that use the smallest sketch sizes, which are as good as the
best CSK methods, have running times that are either lower
or comparable to the best CSK approaches. This suggests
that QCR strategies are more efficient than CSK’s for a fixed
retrieval quality level.

To better visualize the trends in these results, consider the
plot in Figure 4. In this plot, the best methods are the ones
located closer to top-left corner, i.e., the region of better metric

Fig. 4. Runtime versus retrieval quality scores for different parameter settings.

scores (top) and lower running time (left). Here, it is easy to
see that increasing the number of retrieved candidate tables
from 50 (#) to 100 (�) significantly improves retrieval quality,
at only a small runtime cost. Conversely, increasing the sketch
size incurs a significant runtime penalty. This suggests that in
order to improve the results, it is more resource-efficient to
increase the length of the retrieved list than the sketch size.

VI. CONCLUSION

We proposed a generalization of join-correlation queries that
consider both joinabilty and correlation. This new approach
led to the development of an indexing and retrieval method
for correlated table search based on our novel QCR hashing
scheme. We provide theoretical analysis of algorithms and we
show that our approach improves the retrieval of correlated
tables in terms of both ranking accuracy and recall through an
extensive experimental evaluation.

There are multiple open problems in this line of research
that are worth studying in future work. For instance, a nat-
ural question that may arise is how to discover correlations
between other types of data (e.g., images, text). A natural
approach is to encode such data as numerical variables. For
example, text could be encoded using techniques such as
TF-IDF, topic modeling (LDA) [52], or deep-learning-based
approaches (e.g., BERT [53]). A challenge here is that this
would significantly increase the dimensionality of the data (as
each text column would be converted into potentially hundreds
to thousands of columns) and thus impact the performance.
We would also like to explore the application of our methods
to downstream applications [21], [35], dataset search engines,
and data catalogs [6], [22], [32]. In terms of performance, it
would be interesting to evaluate other fast algorithms for top-k
retrieval [25], [45], and set overlap search [23].
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