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ABSTRACT

Automatic machine learning (AutoML) systems aim to automate
the synthesis of machine learning (ML) pipelines. An important
challenge these systems face is how to efficiently search a large
space of candidate pipelines. Several strategies have been proposed
to navigate and prune the search space, from the use of grammars
to deep learning models. However, regardless of the strategy used,
a major overhead lies in the evaluation step: for each synthesized
pipeline p, these systems must both train and test p to guide the
search and to identify the best pipelines. Given a time budget and
computing resources, the evaluation cost limits how much of the
search space can be explored. As a result, these systems may miss
good pipelines. We propose ML4ML, an approach that aims to
reduce the evaluation overhead for AutoML systems. ML4ML lever-
ages the provenance of prior pipeline runs to predict performance
without having to re-train and test the pipelines. We present results
of an experimental evaluation which demonstrates that not only
can ML4ML build a reliable predictive model with low mean abso-
lute error, but the integration of this model with AutoML systems
leads to substantial speedups, enabling the systems to explore a
larger number of pipelines and primitive combinations and derive
pipelines at a much lower cost.
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1 INTRODUCTION

Given a prediction problem, a data scientist must assemble and end-
to-end pipeline that executes multiple steps, from data cleaning and
transformation to estimation. There are many options for each step.
For example, there are several variations of imputers and scalers for
data cleaning, encoders and dimensionality reduction approaches
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for data transformation, and a plethora of learning methods for
estimation. These, together with various hyperparameter choices,
lead to a very large search space a data scientist must navigate in a
trial-and-error process to design an effective pipeline.

Automatic machine learning (AutoML) systems have been pro-
posed as a means to both make data scientists more efficient and
democratize ML by automating the construction of ML models [21].
While early approaches automated model selection, more recent
systems automate the synthesis of end-to-end pipelines which, as
illustrated in Figure 1, include steps for data cleaning, data transfor-
mation and estimation [11, 13, 29, 34]. We refer to these as AutoML-
EEP. Given a problem (e.g., binary classification, regression) and a
dataset, AutoML-EEP systems automatically synthesize pipelines
that solve the problem. Figure 2 shows two pipelines generated for
a binary classification problem that differ in the scaling methods
and estimation models used.

To assemble pipelines, AutoML-EEP systems must explore dif-
ferent combinations of primitives. This is expensive and can take a
substantial amount of time when the search involves a large prim-
itive collection, and also for problems that use large datasets or
complex models (e.g., deep learning). The cost incurred by AutoML-
EEP systems consists of two key components: 1) navigating the
search space and synthesizing pipelines; and 2) evaluating each
derived pipeline. Approaches have been proposed that apply dif-
ferent strategies to control and prune the search space, such as ge-
netic/evolutionary algorithms [33, 34], Bayesian optimization [13,
45, 46], matrix factorization/tensor decomposition [52, 53], rein-
forcement learning [10, 11] and many others [16, 27, 29].

However, regardless of the search strategy, a major overhead
lies in the evaluation step: each derived pipeline must be trained
and tested on the input data. The evaluation results are used to
guide the search process and to help users select the most suitable
pipeline. In practice, this overhead has limited a wider adoption
of AutoML systems by requiring powerful machines with large
memory or computing clusters. In fact, a recent study on the usabil-
ity of AutoML systems reported a number of technical challenges
users face, including running out of memory, failures for complex
pipelines, and the compute-intensive nature of these systems —
some users even mentioned having to revert to manually designing
models [49]. Even for users that have access to powerful computing
infrastructure, the increasing amounts of energy expended for artifi-
cial intelligence (Al) and its environmental implications have raised
concerns, leading to a push towards "Green AI" and energy-efficient
Al systems [30, 41, 44].
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Figure 1: Synthesis of end-to-end ML pipelines. AutoML-EEP
systems search over a large corpus of primitives for data
cleaning, data transformation, and estimation and derive
pipelines that combine these primitives in different ways.
Each derived pipeline must be evaluated - trained and tested,
which is often costly both in terms of time and use of com-
putational resources.
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Figure 2: Pipelines synthesized by an AutoML-EEP system
for a binary classification problem.

Pipeline Provenance as an Enabler for Efficient AutoML. Given
the growing use of AutoML-EEP systems and the fact that, increas-
ingly, people make their provenance available in public reposito-
ries [23, 31, 35], we asked the following question: can we use prove-
nance information and learn how to predict pipeline performance? If
this is possible, by eliminating the need to re-train and test each de-
rived pipeline, the overall cost of pipeline synthesis can be reduced.
This, in turn, brings important benefits: AutoML systems would
require less computational resources (and thus consume less en-
ergy) and could be used by a wider audience. Moreover, by reducing
the evaluation cost, AutoML systems can dedicate more resources
to exploring the search space, opening the opportunity to derive
pipelines that might otherwise be overlooked given a budget.
Learning to Predict the Performance of ML Pipelines. We
explore the problem of learning to predict the performance of end-
to-end ML pipelines using provenance of prior pipeline runs as the
training data. This includes prospective provenance — the pipeline
definition — and retrospective provenance — information about the
pipeline execution, input data, and its results [37]. For example,
the D3M MetaLearning Database [31] maintains information about
pipeline runs, which include information about the training and
test data, the pipeline definition, and its performance on the test
data. In addition, the AutoML systems themselves can be used to
automatically derive provenance as they generate and test pipelines.
While pipeline provenance data is abundant, an important open
question is how to define the learning task. The performance of a
pipeline is influenced both by the actual pipeline (and its primitives)
and the input data. Therefore, these are key inputs for the learning
task. Another important aspect to consider is the structure of the
pipeline supported by an AutoML-EEP system. Some systems use
a linear sequence of primitives, while others make use of directed
acyclic graphs (DAGs) to represent pipelines. Thus, to design a
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general method to predict pipeline performance, we need to take
these different structures into account and devise appropriate en-
coding strategies. Furthermore, the performance of a given pipeline
can vary for different datasets. Thus, an important challenge is to
identify features of datasets that capture the interaction between
pipeline and data and that, at the same time, are good predictors
for pipeline performance.

Last, but not least, pipeline provenance repositories often con-

tain information for many different classes of learning problems
(e.g., binary and multi-class classification, time-series classification)
and cover a plethora of datasets that differ in size, structure, and
contents. This heterogeneity can introduce noise in the learning
process and negatively impact prediction accuracy. Therefore, we
need to devise mechanisms to identify relevant entries to be used
in the training process.
Our Approach: MLAML. We propose ML4ML, a system that lever-
ages provenance and MetaLearning to accelerate AutoML systems.
This acceleration is achieved in part by a pipeline performance
prediction model (P3M), which can be used to replace the costly
evaluation step during the AutoML synthesis process (see Figure 1).
To construct P3M, ML4ML utilizes provenance information stored
in a Pipeline Provenance Store (PPS) that contains triples consisting
of a dataset D, a pipeline P, and the performance of P when applied
on D. At prediction time, given a unseen pipeline and dataset, P3M
outputs an estimate for the pipeline performance.

To support multiple AutoML systems and the different pipeline
structures they use, ML4ML considers multiple pipeline and dataset
encoding methods to systematically select the best combination of
encoding methods for a given system. In addition, to properly han-
dle the heterogeneous nature of pipeline provenance, we propose
a strategy to select from the provenance store a set of entries to
train the prediction model that uses the notion of dataset difficulty
number (DDN) [40]. The intuition behind the DDN is that a pipeline
should have similar performance when tested on datasets with sim-
ilar DDN. Thus, by using the DDN as the criteria to select a subset
of provenance entries, we can build a robust pipeline performance
prediction model.

Contributions. To the best of our knowledge, this paper proposes
the first approach to accelerate AutoML-EEP systems by replacing
evaluation with prediction in the pipeline synthesis process. Our

main contributions can be summarized as follows:
e We introduce an approach that takes both data and pipeline struc-

ture into account to construct a reliable pipeline performance pre-
diction model (P3M);

o We study the effectiveness of different data and pipeline encoding
methods, and propose a systematic approach for selecting the best
combination of methods for a given scenario;

e We introduce a strategy to derive a dataset difficulty number
(DDN) for tabular datasets that is used to select appropriate training
entries used to construct the P3M and experimentally show its
effectiveness;

e We perform an extensive experimental evaluation using multiple
datasets and different AutoML systems. Our results demonstrate
that ML4ML derives a reliable prediction model for tabular datasets
on classification tasks that has low mean absolute error. Further-
more, when combined with AutoML systems, ML4ML leads to
substantial speedups.
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Figure 3: MLAML works in two steps: configuration and deployment. To automatically select an effective configuration for a
given AutoML system, ML4ML takes as input the pipeline provenance, and tests different combinations of dataset and pipeline
encodings as well as identify a suitable DDN threshold. The configuration step is executed only once and in an offline fashion.
When the system is deployed, given a new dataset, pipeline candidates, and the desired number of pipelines (k), ML4AML uses
P3M to rank and evaluate the performance of candidate pipelines. The pipeline with the best evaluation is returned.

2 ML4ML

Background and Definitions. Before presenting our approach,
we first introduce concepts and background information needed to
formally define the problem we address in this paper.

DEFINITION 1. Primitive. A primitive m is an algorithm that is
used as a computational step in a machine learning (ML) pipeline.

DEFINITION 2. Pipeline. A pipeline p is directed acyclic graph
(DAG) that combines a set of primitives.

Figure 2 shows pipelines that orchestrate primitives for imputing
values (Imputer), encoding (One Hot Encoder), and estimation (Ran-
dom Forest, XGBoost).

DEFINITION 3. Pipeline Provenance Store (PPS). As an AutoML-
EEP derives and tests pipelines, it stores their provenance in Pipeline
Provenance Store DByps, which consists of a set of tuples

DBpps = {(d1, p1,51), (d2, p2,52), -, (dn, P> Sn) }

where n is the number of triples (d;, pi, si) that consist of a dataset d;,
a pipeline p;, and a pipeline performance score s; obtained by calcu-
lating an evaluation metric using the output obtained after running
the pipeline p; on dataset d;.

Note that in this paper we use term provenance to refer to logs
recorded during previous executions of an AutoML system. These
logs contain information that can be used as training data to con-
struct a pipeline performance prediction model (P3M). In order
to train this model, we must define its inputs and outputs. More
specifically, from each provenance tuple (d;, p;, si), we use d; and p;
to derive the model inputs that are used to predict the performance
si. Next, we formally define the pipeline performance prediction
problem.

DEFINITION 4. Dataset Encoding. A dataset encoding Ej,4:,(D)
is a feature vector generated by encoding method E 3,;, that represents
characteristics of a given dataset D.

DEFINITION 5. Pipeline Encoding. A pipeline encoding Epjpe (p)

is a feature vector generated by encoding method Epjpe that represents
characteristics of a given pipeline p.

DEFINITION 6. Pipeline Performance Prediction. Given an
AutoML system and a pipeline provenance store DBpps, we aim to
build a reliable pipeline performance prediction model ® that takes as
input the dataset and pipeline encodings [E*, = Er. 1 and outputs

data’ “pipe
an accurate pipeline performance estimate § = ([E, . E;ipe]).

2.1 Solution Overview

As illustrated in Figure 3, MLAML operates in two stages: configu-
ration and deployment.

Configuring MLAML. ML4ML was designed to work with different
AutoML systems. To properly support multiple systems, we include
a configuration stage that determines the appropriate parameters
for the selected AutoML system. Note that this configuration step
is only executed once and offline.

To accelerate AutoML-EEP systems, ML4ML leverages the Pipeline
Performance Prediction Model (P3M): instead of retraining and eval-
uating a model, systems can use P3M to predict the performance of
the synthesized pipelines.

To generate these predictions, P3M relies on information about
the dataset and the pipeline being used. Different encoding meth-
ods can be applied to represent this information. The effectiveness
of encoding methods varies depending on the design of a specific
AutoML system and the pipeline provenance records available. Con-
sequently, to ensure that the most effective encoding methods are
selected, ML4ML tests various combinations of dataset and pipeline
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Algorithm 1 ML4ML Configuration

Algorithm 2 ML4ML Deployment

1: Input: AutoML system S, Pipeline Provenance Store database
DBpps

2: Default Parameters: combination of dataset and pipeline
encoding methods {(Eg4;4, Epipe)i}?:l

3: DDNjperpal = DBpps-max_ddn — DBpps.min_ddn

4 {,uj};‘n:l ={0.05,0.1,.., DDNjpserpar}

s: Initialize 2D array Err with 0Os

6: Dpps = DBpps.tabular_datasets

7. fori=1to 4 do

8: forj=1tomdo

9 for k = 1 to [Dpps| do

10: Initialize err = 0

11: exp_test = DBy

12: exp_train = SelectSimilarExperiments(Dy, DB, y;)

13: err += test_P3M(exp_train, exp_test, (Egqrq, Epipe)i)
14: end for

15: Erryj = %

16:  end for

17: end for

18: i, j* = argmax Err
9: return (Eggeq, Epipe) i+ and pj-

—_

encoding candidates during the configuration phase. This is out-
lined in Algorithm 1 and illustrated in the top part of Figure 3. This

process takes the pipeline provenance of an AutoML system as

input and produces a dataset encoding (E;,;4), @ pipeline encoding

(Epipe), and a data filter threshold (i) as output. The threshold y

is a crucial component of the configuration process, as it deter-
mines which pipeline provenance records are selected for use in

the prediction model. The selection of an appropriate threshold

value is discussed in detail in Section 2.3. In Section 2.4, we present

various dataset and pipeline encoding methods that we considered

for ML4ML.

Deployment: Deriving Predictions. The performance of a pipeline
can vary significantly depending on the characteristics of the dataset

it is applied to. Therefore, when constructing the Pipeline Perfor-
mance Prediction Model (P3M) for a given dataset Dpeny, it is crucial

to select pipeline provenance entries that include datasets D; that

are similar to Dpe.y, in the sense that a given pipeline will have

similar performance for D¢y and D;. To capture this notion of
similarity, ML4AML computes a Dataset Difficulty Number (DDN)

for the datasets, and uses the DDN to filter the pipeline provenance

prior to training the prediction model P3M. The details of this pro-
cess are discussed in subsequent sections. Before delving into the

specifics, we provide an overview of the workflow associated with

the deployment phase.

As demonstrated in the lower part of Figure 3 and outlined in
Algorithm 2, the deployment phase takes as input a new dataset,
pipeline candidates, and the desired number (k) of pipelines. First,
a subset of the tuples is selected from the provenance store DB s
to serve training data for building the P3M model (Algorithm 2,
line 2). To do so, we first compute the dataset difficulty number
for the input dataset Dpesy. Then, we use DDNp,_  to find tuples
that have a similar difficulty level in the provenance store DBpps

1: Input: Pipeline Provenance Store database DBy, dataset en-
coding method Eg4/4, pipeline encoding method Ep;pe, filter
threshold y, unseen dataset Dy, pipeline candidates P, bud-
get k

: exp_sim = SelectSimilarExperiments(Dpevy,DBpps,i)

: P3M = Train(exp_sim, Egatq, Epipe)

: Ppred = P3M.predict(Egasq. Epipea Dpews P)

¢ Prank = Rank(Ppreq)

: for i in range(k) do

Evaluate(P,4n5—;)

: end for

. return best_pipeline

F-JE= RS - NS I N I )

(i.e., tuples that have dataset difficulty difference smaller than the
threshold p). Once we select the training data, the next steps are:
1) build the P3M model; 2) use it to predict the performance of
candidate pipelines on Dye4y; and 3) rank the pipelines according
to their predicted performance (Algorithm 2, line 3-5). Finally, the
top-k predicted pipelines are evaluated and the pipeline with the
best evaluation is then returned as the output (Algorithm 2, lines
6-9).

In the following sections, we define the dataset difficulty number
and how it is used (Section 2.2), describe in detail the process of
selecting entries from the pipeline provenance store (Section 2.3),
introduce different encoding methods (Section 2.4), and present the
P3M model (Section 2.5).

2.2 Dataset Difficulty Number (DDN)

The Dataset Difficulty Number (DDN) plays a critical role in he
selection of entries from the PPS to train the prediction model
P3M. Intuitively, the DDN provides a score that approximates the
performance of the best model on a dataset (e.g., classification
accuracy in the context of this paper), and it should be computed
much faster than actually applying the model to the data. Consider
for example, an easy dataset for which the best model, such as a
Random Forest or a 10-layer multi-layer perceptron (MLP), takes 10
minutes to run and achieves a classification accuracy of 96%. The
DDN for this dataset is 0.93 (corresponding to the classification
accuracy of 93%) and can be computed using a 3-layer MLP in just
1 minute. For a more difficult dataset, where the best model takes
30 minutes and achieves a classification accuracy of 84%, the DDN
value of 0.8 can be computed in 1 minute. In summary, the DDN
value effectively represents the difficulty level of a given dataset
and it is easy to compute.

Another benefit of using the DDN is efficiency: it provides a
concise representation (a one-dimensional scalar) that significantly
enhances the computational efficiency of the pipeline provenance
filtering process (Section 2.3). For instance, comparing the distances
between various scalars (achieved by subtracting two numbers) is
considerably cheaper than comparing the distances between high-
dimensional vectors (such as using the L? norm distance). By sim-
plifying the representation and reducing it to a single scalar value,
the DDN allows for quicker and more manageable comparisons,
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Figure 4: Computing the Dataset Difficulty Number (DDN).
The configuration phase supports the search of different
parameters for a dataset difficulty networks (DDNet). The
default setting is a 3-layer MLP. Given a tabular dataset, nu-
merical, categorical and target columns are handled with
different methods. Then DDNet takes the processed data and
computes the Dataset Difficulty Number. The input size to
the DDNet is the same as the number of attribute columns,
or X.column in this figure.

Algorithm 3 Compute Dataset Difficulty Number (DDN)

1: Input: Collection of datasets D = {D1, Dy, ..., Dy, }, MLP param-
eter settings ParaSet

: Output: Collection of DDNs A = {A1, Ag, ..., Ap}

: fori=1tondo

(Xi, Y;) < process(D;)

initialize a DDNet M with ParaSet

A; « train_and_evaluate(M, X;, Y;)

: end for

: return A

[ S B S

ultimately resulting in more efficient filtering and processing of
experimental data in pipeline provenance store.

Computing Dataset Difficulty Number. To encode a dataset D,
we compute a scalar DDN € R! using a multi-layer perceptron
(MLP) [19]. The calculated difficulty score is a scalar number within
the range [0,1], which represents an approximation to the best
accuracy score of a given dataset.

We selected MLP to compute DDN due to its strong approxima-
tion capability, as per the Universal Approximation Theorem [20],
and its ability to perform automatic feature engineering [18]. These
properties make MLPs an efficient and robust choice for calculating
dataset difficulty.

As shown in Figure 4, the configuration phase of our system
supports the search of different hyperparameters for the Dataset
Difficulty Network (DDNet), including the number of layers, hid-
den units, and activation functions. By allowing for the tuning of
hyperparameters, the configuration phase helps to optimize the
performance of DDNet for a given dataset. The default implemen-
tation of DDNet is as follows: a three-layer Multi-Layer Perceptron
(MLP) with 256 hidden units in each layer, cross entropy as the
loss function, and a dropout rate of 0.5. The Adam optimizer [25]
is used to minimize the loss during training. Keras library [7] is the
implementation library for MLP.

The input to DDNet is data processed from a CSV file (ie., a
tabular dataset). The processed data contains feature attributes X
and target variables Y. Numerical attributes are preserved, while
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Figure 5: Filtering pipeline provenance. For the threshold
p = 0.05, given a new dataset with DDNj,.., = 0.88, provenance
entries will be selected if they include datasets with DDN
between 0.83 (DDNpeyy — 1) and 0.93 (DD Npeyy + p).

categorical attributes are encoded using an ordinal encoder. The
target column Y is also transformed using an ordinal encoder if it
is categorical. As outlined in Algorithm 3, after processing an input
dataset, a DDNet model (MLP) is initialized with same parameters
to compute the difficulty number DDN.

2.3 Provenance Selection for Training the P3M

Provenance stores (PPS) are heterogeneous, encompassing pipelines
that use datasets with different levels of difficulty. Thus, to construct
a reliable prediction model for a new dataset Dye,y, We evaluate
the difficulty level (DDN) of Dj.+, and select previous experiments
from the provenance store that include datasets with difficulty
levels comparable to that of Dyey.

Filtering Pipeline Provenance. Algorithm 4 outlines the proce-
dure for selecting tuples from the provenance store DByys. Given
datasets D1 and D3, we first compute the DDN difference § =
IDDN(D;) — DDN(D3)|. Next, we use a threshold y to filter out en-
tries that have § > p. In other words, the parameter y represents the
maximum acceptable difference between the DDNs of two datasets.

Algorithm 4 SelectSimilarExperiments

1: Input: target dataset D;, Pipeline Provenance Store database
DBPPS, threshold value y

2: Initialize exp_sim = 0

3: Dpps = DBpps.tabular_datasets

4 for D; in Dpps do

5. if D; # Dy then

6: if IDDN(D;) — DDN(D;)| < p then
7 exp_sim = exp_sim U DB;

8: end if

9:  endif

10: end for

—_
_

: return exp_sim

For instance, as illustrated in Figure 5, if we set the threshold
4 = 0.05 and have a new dataset with dataset difficulty number
DDNpeny = 0.88, the filter will create a range from 0.83 (DD Npew —
1) t0 0.93 (DD Npeny + p1). Consequently, only the entries with per-
formance between 0.83 and 0.93 will be selected, ensuring that the
chosen provenance entries are relevant to the input dataset.
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Experimentally Selecting a Suitable ; Threshold Value. As
discussed earlier, we select all entries with DDN difference smaller
than p. This brings a new question: what threshold value should we
use? ML4ML uses a data-driven approach to automatically derive
this value during the configuration stage. To do so, it evaluates
different threshold values as described in Algorithm 1. Specifically,
the pipeline provenance store is first used to calculate the interval
DDN;pterval between the maximum DDN and the minimum DDN
(Algorithm 1, line 3), and this DDNj,ser0q is utilized to generate
threshold value candidates (Algorithm 1, line 4). Next, different
threshold values are tested (Algorithm 1, line 7-17) and, finally,
the best threshold value is selected to be used in the deployment
stage (Algorithm 1, line 18-19). We discuss the effectiveness of the
threshold selection process in Section 3.2.

2.4 Encoding Data and Pipelines

To make a prediction, the prediction model P3M considers both
the encoding of the input dataset and the encoding of the pipeline
generated by the AutoML pipeline search algorithm. Below, we
describe our choices for dataset and pipeline encoding methods.

24.1 Dataset Encoding: Multi-Dimensional Meta-Features
(MF). Besides the Uni-Dimensional dataset encoding method using
dataset difficulty number, ML4ML also includes a Multi-Dimensional
method. One intuitive way to encode a given dataset is to compute
its meta-features, which serve as a representation of dataset prop-
erties [1]. The properties used to characterize the dataset include
general information such as the number of rows and columns, as
well as specific features derived from the data. We use a set of
meta-features extracted from each dataset using the MFE frame-
work [5]. These meta-features capture statistical characteristics
like mean, variance, and skewness for numerical attributes, as well
as information-theoretic measures such as entropy and mutual
information for categorical attributes. Furthermore, they include
features like the count of missing values and outliers, and struc-
tural features like the extent of correlation among attributes and
the existence of clusters or subgroups in the data. The resulting
dataset encoding is a 231-dimensional vector Egg;4(D) € R?31.

2.4.2 Dataset Encoding: Uni-Dimensional Dataset Difficulty
Number (DDN). We also consider the DDN as the dataset en-
coding method. To encode a dataset D with DDN, we compute a
one-dimensional vector Eg,;,(D) € R! using a Multi-Layer Per-
ceptron (MLP) as described in Section 2.2 and Figure 4.

2.4.3 Pipeline Encoding: Structure-Agnostic OneHot Encoder.

One straightforward and structure-agnostic method to represent ML
pipeline information is using OneHot Encoder. For a given AutoML
system, the dimension of the one-hot encoding vector for pipeline
P is Epipe(p) € RMI where [M] is the cardinality of the set M of
unique primitives used by the system: M = {m1, my, ..., mpq| }. For
example, given a pipeline p consisting of primitives

{ma, mq, ..., mpr—1}

the one hot encoding for p is Epipe (p) =10,1,0,1,...,1,0]. In other
words, the encoding vector has value 1 on the positions where
corresponding primitive exists in the given pipeline and has value
0 otherwise.
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2.4.4 Pipeline Encoding: Structure-Aware Graph Neural Net-
work (GNN). Different AutoML systems use different types of
directed acyclic graphs (DAG) to represent pipelines. For exam-
ple, Auto-Sklearn [12] derives simple linear pipelines while Al-
phaD3M [10] is able to generate graph-structure pipelines. To ac-
count for these complex structures, ML4ML also uses graph neural
networks (GNNs) as an encoding method for pipeline. GNNs uses
deep learning to transform a graph structure into embeddings for
various tasks, from node classification, link prediction to graph
classification [28]. We choose the powerful Graph Isomorphism
Network (GIN) [50] based GNN layers to encode our pipelines. In
the case of GNN, each node represents a primitive, and two nodes
are connected by an edge only if the corresponding primitives co-
exist and are connected within the same pipeline. The optimizer is
Adam. The PyTorch Geometric library [14] is used to implement
the graph neural network.

245 Selecting the Best Encoding Combination. As discussed
above, it is not clear what combination of encodings leads to the best
prediction performance for a given AutoML system and PPS. Before
deployment, ML4ML determines which combination is optimal for
an given AutoML system and pipeline provenance (Figure 3 upper
part and Algorithm 1). There are four combinations of encoding
methods: (1) DDN for dataset encoding and OneHot for pipeline en-
coding; (2) DDN for dataset and GNN for pipeline; (3) MetaFeature
for dataset and Onehot for pipeline; (4) MetaFeature for dataset and
GNN for pipeline. Given an AutoML system and its pipeline prove-
nance store, ML4ML first examines these combinations of encoding
methods (specifically Algorithm 1, line 7-17). Then the combina-
tion with the least mean absolute error on pipeline performance
prediciton is selected (Algorithm 1, line 18-19) for deployment stage.
The experiment results of this configuration phase is presented in
Section 3.2.

2.5 P3M Model

Just like the MLP used for computing the dataset difficulty number
(DDN), the P3M prediction model also employs an MLP regressor
architecture to tackle the pipeline performance prediction problem.
The MLP regressor for P3M is a powerful and flexible neural net-
work model that consists of an input layer, three hidden layers with
256 neurons of each layer, and an output layer. The rectified linear
unit (ReLU) activation function and the Adam optimizer are used.
The learning rate is 0.001 and the number of epochs for training is
200. Through automatic feature engineering and non-linear activa-
tion functions, the MLP in P3M is able to learn and generalize from
the given input dataset and pipeline encodings to make reliable
performance predictions.

As illustrated in Figure 6, the P3M input is a concatenation of
the given dataset and pipeline encodings. The output is the pre-
dicted performance of the specified pipeline on the input dataset.
The filtered pipeline provenance, a collection of (dataset, pipeline,
pipeline performance) tuples, is utilized for training P3M. During
training, the dataset and pipeline encodings serve as the training
data (Xtrgin), while the pipeline performance acts as the training
label (y;4per)- In the prediction phase, the dataset encoding and
pipeline encoding constitute the testing data (Xyes), and the corre-
sponding performance is predicted (ypreq)-
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Figure 6: Training P3M and using it to predict pipeline performance for a new dataset.

3 EXPERIMENTAL EVALUATION

3.1 Experiment Setup

Our approach is designed to expedite AutoML-EEP systems for
novel, previously unseen datasets. Since this acceleration occurs
during the Deployment stage (refer to Figure 3), we evaluate P3M’s
Deployment performance. Additionally, we assess the effectiveness
of the Configuration stage, which determines the optimal encoding
methods for constructing P3M.

Data. We conduct experiments on 33 tabular datasets from the
AutoML Benchmark on classification task, encompassing datasets
of varying sizes, domains, and difficulty levels [15]. To build PPS,
we ran the AutoML system for each dataset until all pipelines in the
search space were derived and evaluated. When a dataset is selected
as the new dataset in the deployment phase experiment, the (data,
pipeline, pipeline performance) history of that dataset is excluded
from the pipeline provenance store. The history of the other 38
datasets is considered for selecting pipeline running history to train
P3M (see Figure 5). In this way, both the new dataset and its pipeline
performance remain completely unseen.

AutoML Systems. For our experimental evaluation, we tested
ML4ML with two open-source AutoML systems: AlphaD3M [2]
and TPOT [34]. These systems use different search strategies: Al-
phadD3M uses deep reinforcement learning to search and derive end-
to-end pipelines; while TPOT optimizes machine learning pipelines
using genetic programming. TPOT was one of the first AutoML sys-
tems developed and it is widely used in the data science community.
ML4ML requires the underlying AutoML system to record pipeline
provenance. AlphaD3M automatically outputs pipeline provenance
when searching pipelines, and we modified TPOT to record this
information. For both systems, the input consists of a subsampled
version of a given tabular dataset (with a maximum of 5,000 rows),
and the default optimization settings are employed for pipeline
search.

3.2 Configuration Phase: Evaluating Encoding
Strategies

Given an AutoML system and its pipeline provenance store, ML4ML
initially performs a configuration experiment to identify the op-
timal combination of dataset and pipeline encoding methods, as

well as the threshold value for filtering pipeline provenance ac-
cording to a target dataset (Section 2.4). This search examines all
possible combinations exhaustively. Note that this process is only
executed once (and offline) for a given AutoML system and PPS.
Thus, the execution of the configuration stage does not impact the
user experience.

We examined the following combinations: (1) DDN,OneHot, (2)
DDN,GNN, (3) MF,OneHot and (4) MF,GNN, where the first is
dataset encoding and the second is pipeline encoding. For example,
the combination DDN,OneHot has dataset difficulty number as
the dataset encoding, and onehot encoder as the pipeline encod-
ing method. The range of threshold values is determined by the
maximum and minimum DDNs in the pipeline provenance store,
as described in Section 2.3 and Algorithm 1. To encode a dataset D
with meta-features (MF), we computed a vector Egy;,(D) € R?!
using an open-source meta-feature extractor [5].

Table 1 presents the results for AlphaD3M and shows the mean
absolute error of the predicted pipeline performance (averaged
on all datasets) for different encoding combinations and different
threshold p values. The combinations using MF as dataset encoding
are consistently worse for all thresholds, while the combination
DDN with OneHot is uniformly better for all values. This suggests
that although the meta-features include a larger number of features
it is not as informative as the dataset difficulty number - this is an
issue we plan to explore in future work. Among all configuration,
DDN is the best method to represent a dataset, OneHot is the best
method to represent a pipeline, and y = 0.1 is the best threshold to
filter pipeline provenance.

We were initially surprised to find that OneHot encoding works
best for pipeline representation. Since OneHot encoding is structure-
agnostic, intuitively, it should not be able to capture pipeline connec-
tivity, which could impact the accuracy of the P3M prediction model.
A close examination of the actual pipelines derived by the AutoML
systems showed that they have a simple (often linear) structure
and they are also short — consisting of few primitives. This obser-
vation confirms the findings in [38] that most explicit pipelines
(those defined using a single library, such as SCIKIT-LEARN or Al-
phaD3M) have a length of 2 to 5 primitives. This suggests that the
information represented by individual primitives is more significant
than the information conveyed by their connectivity. Consequently,
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Table 1: Configuration Phase: Mean Absolute Error of Pipeline Performance Prediction for Different Encoding Combinations
and Different Thresholds. Cells with darker blue color show better performance (i.e., lower error). Among all configurations,
the combination DDN,OneHot with threshold i = 0.1 has the best performance.

Threshold p ‘ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

DDN,OneHot | 0.113 0.110 0.111 0.119 0.122 0.120 0.118 0.119

DDN,GNN 0.118 0.100 0.119 0.144 0.158 0.169 0.176 0.174

MF,OneHot 0.354 0368 0.347 0337 0374 0356 0.296 0.273  0.255

MF,GNN 0.194 0.169 0.150 0.162 0.188 0.187 0.168 0.175 0.189
30 mm Top s 25 = Tops evaluating synthesized pipelines is reported for the Actual method.
gas Top 10 § 20 Top10 For the Top 5 and Top 10 methods, the reported time includes the
g2 H 15 following components: DDN computation, provenance filtering,
g B g 1 P3M training, P3M predicting, P3M ranking, plus the time required

g £ for evaluating the top-ranked pipelines.

= =7 Figure 8 illustrates the performance of P3M using different bud-
OSo% 6% 70% 80% oo% 100%  Cow 5% 0% 13% 20% 25%  gets compared to the Actual method in terms of prediction quality

Accuracy Percentage (Actual accuracy as 100%)

(a) Relative Accuracy (b) Relative Runtime
Figure 7: The histogram summarizes accuracy and runtime
for Top5 and Top10 budgets in comparison to the Actual
accuracy. The results show that the majority of Top5 datasets
achieve an accuracy within 90% of the actual accuracy, while
taking less than 5% of the actual runtime. For more generous
budgets, most Top10 datasets achieve an accuracy within
95% of the actual accuracy and require less than 10% of the
runtime. Figure 8 provides a detailed view of the performance
metrics for each dataset.

the concise OneHot encoding outperforms graph encoding in this
context.

Note that we have also run this experiment using TPOT and
observed similar trends. The optimal encoding combination and the
dataset filter threshold are used at the deployment stage experiment.

3.3 Deployment Phase: P3M Quality and Speed

An important goal of P3M is to accelerate the AutoML pipeline
synthesis process with minimal negative impact on the quality
of the derived pipelines. To assess the effectiveness of P3M, we
compare the quality of the derived pipelines and the run times
using the following three approaches:

Actual: the original AutoML system that evaluates each synthesized
pipeline (i.e., training and testing pipelines with the actual dataset).
Top 5: ML4ML that skips the evaluation of pipelines by using the
P3M prediction with a budget to retrieve the top-5 pipelines. In
other words, only the top-5 ranked pipelines from P3M predictions
are evaluated by training and testing with the actual dataset (see
the Deployment part in Figure 3).

Top 10: Same configuration as Top 5 but that evaluates the top-10
ranked pipelines from P3M predictions.

For classification accuracy, the best one is reported from eval-
uated pipelines: all synthesized pipelines for the Actual method,
the top 5 pipelines for the Top 5 method and the top 10 for the
Top 10 method. For runtime, the total time required for deriving and

Runtime Percentage (Actual runtime as 100%)

and runtime speedup. The first plot, displaying the classification
accuracy of P3M with top 5 and top 10 budget sizes, indicates
that both budgets can achieve high classification accuracy, closely
matching the Actual method. Moreover, the top 10 budget results
in marginally better accuracy. The second plot, showcasing the
runtime of P3M with top 5 and top 10 budget sizes, reveals that for
the majority of datasets, P3M with both budget sizes significantly
reduces runtime compared to the Actual method. These findings
suggest that P3M can maintain high classification accuracy while
greatly accelerating the pipeline synthesis process, demonstrating
the effectiveness of P3M in optimizing the performance of machine
learning pipeline synthesis.

3.3.1 P3M Speedup in Achieving the Best Accuracy. In the above sec-
tion, we take an overview that P3M can have a substantial speedup
while achieving close-optimal classification accuracy. In this sec-
tion, let’s take a detailed look of P3M acceleration of individual
datasets. In addition to comparing P3M with baselines of original
AutoML systems, we also compare with random predictions.
AlphaD3M/TPOT - Baseline: AutoML system with its default
pipeline search strategy. Each pipeline is evaluated.

P3M: ML4ML that skips the evaluation of pipelines by using the
P3M prediction with budget for top 20. In other words, only the
top 20 ranked pipelines from P3M predictions will be evaluated
(training and testing with the actual dataset).

Random: similar as P3M with budget for top 20. But instead of
using P3M to predict the pipeline performance, a random clas-
sification accuracy between 0 and 1 is assigned as the predicted
performance.

Figure 9 plots the best accuracy over the time from above meth-
ods. Two datsets Airlines and Fashion MNIST are presented, as they
represent the diversity of run time and the diversity that different
AutoML systems handle the same dataset. For example, Airlines
dataset runs slowly on AlphaD3M, but fast on TPOT. With the help
of P3M, the time to find the optimal pipeline can speed up to 22.9x.

4 RELATED WORK

AutoML for Pipeline Synthesis. AutoML systems have received
substantial attention in the recent literature. However, the large
search space and the need to evaluate each derived configuration on
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Figure 8: The two plots show the performance of P3M with different budgets (Top 5 and Top 10) compared to the Actual method
Y-axis is different dataset names. Both plots are generated by ranking the runtime of the Actual method increasingly. The first
plot presents the classification accuracy of P3M compared to the Actual method. The results show that P3M with both budgets
achieves classification accuracy close to the Actual method, and the top 10 budget is slightly better than top 5. The second plot
shows the runtime comparison. P3M has a much faster speed compared to the Actual method. In summary, the results suggest

that P3M can achieve a much faster speed with a small trade-off of classification accuracy. Figure 7 presents a summary of
relative accuracy and relative runtime.

actual datasets makes AutoML systems computationally expensive.

Many approaches have been proposed to make the search process
more efficient. These optimization methods include grid/random
search [16, 27], genetic/evolutionary algorithms [33, 34], Bayesian
optimization [13, 45, 46], matrix factorization/tensor decomposi-
tion [52, 53], and reinforcement learning [10, 11]. Several surveys
are available that cover these in detail [17, 21, 24, 54, 56, 57]. Meta-
learning has also been used to further speed up the search [12, 51].

There have also been approaches that reduce the evaluation cost
by training and testing using a small sample of the data [42, 47, 51].
But all these approaches still require each derived pipeline to be
evaluated. In this paper, we aim to reduce the cost of the evaluation
by replacing the costly training-testing step with prediction.

AutoML for Neural Architecture Search. Neural Architecture
Search (NAS) aim to identify good configurations for neural net-
works. Genetic evolution and reinforcement learning have been
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Figure 9: Deployment Phase: P3M Speedup Effectiveness in
Achieving the Best Accuracy. These figures present the run
time to find the best pipeline. Each figure has two red vertical
lines that mark the time of P3M and the time of Original Au-
toML system to find the best pipeline. The x-axis represents
run time in seconds and in log scale, and y-axis represents the
best accuracy. With the help of P3M, a 3.2X to 22.9X speedup
can be achieved to find the optimal pipeline.

employed to search different neural architectures [3, 6, 32, 36, 39, 48,
55, 58, 59]. All of these methods require a large amount of training
time when exploring the search space. To reduce the training cost,
approaches have been proposed to predict the performance of a
given architecture [4, 9, 26, 43]. Peephole [8] utilizes the network
structure information to predict the network accuracy, but it does
not leverage information from similar datasets. Thus, given a new
dataset, it needs to train hundreds of networks to build a reliable
prediction model. TAPAS [22] constructs network performance pre-
diction model on unseen dataset without expensive training. This
is achieved by learning from previous experiments and predicting
based on the difficulty of the dataset. Similar to ML4ML, these ap-
proaches replace evaluation with prediction, but there are important
differences: (1) While NAS approaches have focused on image or
language data, ML4ML has to support tabular datasets; and (2) Neu-
ral network performance prediction is essentially primitive-level
prediction (i.e., the neural network can be viewed as an Estimation
algorithm). In contrast, our approach derives pipeline-level perfor-
mance predictions and each pipeline consists of multiple primitives
for data pre-processing, feature engineering, and estimation. These
require new approaches for encoding data and the pipeline, as well
as for learning which we describe in detail in Section 2.

5 CONCLUSION

We propose ML4ML, an approach that significantly reduces the
evaluation overhead for AutoML systems. ML4ML leverages the
provenance of prior pipeline runs and the data they use — stored in a
pipeline provenance store- to predict pipeline performance without

1045 104 23973

Haoxiang Zhang, Roque Lopez, Aécio Santos, Jorge Piazentin Ono, Aline Bessa, and Juliana Freire

having to train and test them. We present results of an experimental
evaluation which demonstrate that not only can ML4ML build a
reliable predictive model with low mean absolute error, but the in-
tegration of this model with an AutoML system leads to substantial
speedups, enabling the system to not only explore a larger number
of pipelines and primitives, but also derive effective pipelines at a
much lower cost.

Our experimental evaluation provided valuable insights and

showed that it is possible to predict pipeline performance for classi-
fication tasks over tabular datasets. For future research, we plan to
explore additional learning tasks such as regression and time series
problems, various types of datasets or data formats like audio and
video, and a broader range of open-source AutoML systems. Simul-
taneously, we plan to investigate and incorporate more dataset and
pipeline encoding methods to further enhance the performance of
P3M.
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