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Abstract

The growing complexity and volume of data highlight the importance of
learning-based classifiers across diverse tasks, from medical diagnosis to envi-
ronmental monitoring. A common and impactful use case is data triage—efficiently
identifying rare, relevant instances in large, imbalanced datasets. This is cru-
cial for enabling domain experts to focus on what matters most. However,
traditional supervised learning approaches often struggle with scalability due
to the high cost and time required for manual labeling.

We introduce HILTS (Human-In-the-loop Learn To Sample), a framework
designed to tackle these limitations. HILTS leverages Large Language Models
(LLMs) for automated initial labeling and strategically incorporates human
expertise through advanced active learning techniques. It selects diverse and
representative samples for pseudo-labeling and identifies highly uncertain or
likely incorrect LLM labels for targeted human review. This focused use
of human effort maximizes the value of domain expertise while minimizing
annotation overhead.

Our system reduces human labeling effort by up to 80% while outper-
forming few-shot foundation models such as GPT-4 by over 5% in Fl-score
in some scenarios—all at a significantly lower cost. HILTS also shows clear
improvements over fully automated pseudo-labeling approaches and proves
especially effective in handling class imbalance in real-world datasets. Its
adaptability and efficiency make it a practical and scalable solution for high-
stakes, domain-specific data triage tasks.
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1. Introduction

Supervised machine learning methods, such as classification, have become
indispensable tools for large-scale data analysis, particularly for data triage
tasks where users need to identify and prioritize specific rare items within
large data collections. This challenge spans numerous critical domains from
monitoring online advertisements for illegal wildlife products [1], to detecting
traces of criminal activity across web platforms [2].

In these scenarios, finding relevant information is akin to searching for
needles in haystacks. Traditional search approaches, such as keyword-based
queries, prove inadequate for such complex information needs. They lack
the expressivity required to capture nuanced patterns and often return over-
whelming numbers of irrelevant results due to lexical ambiguity and semantic
variations.

Machine learning classifiers offer a more promising alternative by learning
to distinguish relevant items based on complex feature patterns rather than
simple keyword matching. Such classifiers can not only identify items that
satisfy specific criteria but also rank them by confidence scores, enabling
analysts to focus their limited attention on the most promising leads. This
automated prioritization is particularly valuable when dealing with time-
sensitive investigations or resource-constrained analysis scenarios.

However, the traditional supervised learning paradigm creates a signifi-
cant bottleneck: each new classification task requires curating a specialized
training dataset, demanding that domain experts manually examine a large
number of examples to identify positive instances. This problem is com-
pounded in domains in which relevant items are scarce, making up a small
percentage of the data items. The labeling process is labor-intensive and
time-consuming, severely constraining the scale, scope, and timeliness of crit-
ical analyses, often forcing researchers to examine only small data subsets or
narrow time windows rather than conducting the comprehensive investiga-
tions needed to understand complex phenomena.

Data Triage for the Detection of Wildlife Trafficking. Wildlife traf-
ficking is a global issue with dire environmental and health consequences,
including significant biodiversity loss [3], [4, [5]. Despite increased efforts to



combat it, the rise of online marketplaces [6] has created new challenges
for endangered species [7, 8, [9]. At the same time, traffickers leave digital
footprints, which can be analyzed to gain insights into trafficking activities.

The main challenge lies in identifying relevant data among millions of
online ads, as broad searches often yield irrelevant results [10]. For example,
searching for “shark” on eBay may return ads for toys, clothing, and vac-
uum cleaners alongside items containing actual shark parts. Experts must
carefully curate this data to ensure accuracy, but this manual process is
time-consuming, limiting the scope of research on online wildlife trafficking
11, 12, 13, 14, [15, [16) 17, 18, [7, 19, 20]. The same challenge arises when
trying to understand the overall landscape of animal products online. For
instance, consider the challenge of curating training data for the following
classifiers.

Example 1.1 (Animal Products). An environmental scientist aims to build a
classification model to identify any animal-derived product advertised online
on an e-commerce platform. Understanding the overall landscape requires
searching e-commerce platforms that contain millions of diverse product list-
ings [21, 10]. Animal-related products, especially those associated with illicit
trade, are exceedingly rare compared to other irrelevant animal-related prod-
ucts (e.g., plush toys, postcards, photos, etc).

Example 1.2 (Small Leather Products). To focus specifically on identifying
the illegal trade of small leather goods made from protected species—such
as belts, wallets, and bags made from alligator or snake skin—it is necessary
to develop an even more specialized classifier. These items represent a tiny
fraction of not only all e-commerce ads but also general leather goods. The
manual effort required to build labeled data that distinguishes these rare,
specific items from legitimate leather is highly time-consuming and inevitably
results in imbalanced training dataset.

For each of these tasks, experts would ideally label a large, representative
dataset to train a robust classifier. However, the stark differences between
these tasks often mean that classifiers are not reusable, greatly limiting the
experts’ ability to explore multiple research questions simultaneously.

Limitations of Few-Shot Classification using LLMs. Foundation mod-
els, particularly Large Language Models (LLMs), offer an alternative solution
due to their vast knowledge and natural language understanding capabilities



[22, 23], 24]. They can perform few-shot classification, significantly reduc-
ing the need for human input. However, classifying millions of ads directly
with powerful LLMs like GPT-4 is prohibitively expensive (e.g., it costs over
$17,000 to classify 800,000 ads). This cost, combined with the environmental
impact of LLMs [25] and the high percentage of irrelevant data, makes direct
zero-shot classification impractical for most researchers and under-resourced
institutions [26]. While open-source models (such as Llama3, LLaVA) offer
lower costs, their accuracy is often significantly lower [10].

Leveraging LLMs for Cost-Effective Labeling. To support cost-effective
classification of data for diverse research questions, we previously introduced
LTS (Learn to Sample) [10]. LTS addresses the cost challenge by using LLMs
to annotate a subset of the collected data using few-shot in-context learning.
These LLM-generated pseudo-labels are then used to train smaller, special-
ized classifiers that can be applied at scale, drastically reducing the total
number of expensive LLM inferences needed.

A core challenge for LTS is developing effective sampling strategies for
highly imbalanced datasets where the target class represents a tiny fraction
of available data. Random sampling proves inadequate in this setting, as
it fails to capture sufficient positive examples for meaningful model training
while simultaneously over-representing the majority class, leading to classi-
fiers that exhibit poor recall on the rare but critical instances that analysts
actually seek to identify. LTS tackles this problem by learning to select
samples: it clusters the data to ensure diversity and employs a multi-armed
bandit strategy to balance exploration (finding new types of ads) and ex-
ploitation (sampling from clusters likely to contain relevant ads), all within
an iterative active learning framework. This strategy allows LTS to build
and refine models to classify and select relevant ads efficiently. Our previ-
ous work demonstrates that models trained with LTS-labeled data achieve
high accuracy and have significantly reduced costs compared to direct LLM
classification.

However, a key limitation of LTS is its reliance on a manually curated
validation set, which guides the sample selection process. Constructing such
a set is non-trivial: the user must identify a subset of data that is both
diverse and representative of the overall distribution—despite limited prior
knowledge—and manually label each item. If the validation set is biased or
lacks sufficient coverage of relevant subtypes, it can mislead the sampling
strategy, resulting in poor model performance and inefficient use of labeling



effort (i.e., the user may waste time labeling ads that do not significantly
improve performance).

While LTS significantly reduces the cost and effort compared to manual
labeling or direct LLM inference on full datasets, it relies solely on LLM-
generated pseudo-labels. Although LLMs are effective at providing initial
labels, they are not foolproof, especially efficient LLMs that have only a few
billion parameters. When LLMs make mistakes, especially systematic ones,
those errors can be propagated through the iterative learning process. Incor-
rectly labeled data can degrade the training signal provided to the classifier,
leading to poor sampling decisions and, ultimately, an ineffective classifier.
By incorporating human expertise into the labeling process, we can further
enhance label quality and, consequently, model performance (as we demon-
strate in Section [f]).

Contributions. In this paper, we introduce the HILTS framework. HILTS
framework generalizes the LTS algorithm, introducing the human in the loop.
It is designed to minimize the amount of human effort required to build
training data for classifiers, while enhancing the quality of the labeled data
produced. As opposed to LTS, which requires a manually curated validation
dataset, HILTS offers flexibility regarding validation data: it allows users
to provide an existing validation set, if available, but it can also dynami-
cally generate one automatically. Users provide a detailed task description
and parameters that are used to create LLM-generated pseudo-labels, thus
integrating user domain knowledge directly into the label generation. To
reduce the number of pseudo-labels reviewed by humans, HILTS carefully
sub-samples these labels and presents them to users who can review and
correct them if necessary, ensuring that domain-specific nuances and critical
knowledge are accurately captured. This human feedback loop is crucial for
refining training data and building more accurate and reliable classifiers.

To facilitate human in the loop, the framework supports different sam-
pling strategies designed to provide a smaller and highly-informative sample
for user review. These include: (1) random selection, where a user-specified
sample size is randomly drawn; (2) an embedding-based approach that iden-
tifies potential label disagreements or areas of interest based on the similarity
of the samples; and (3) an uncertainty-based approach, which leverages the
trained model to predict labels and prioritize samples where the model’s
confidence is lowest. More comprehensive details about these three sampling

approaches will be described in Section



To streamline the incorporation of human feedback and support the use
cases in Examples and [1.2] we implement the HILTS framework in the
HILTS system, which allows users to build training data seamlessly through
an easy-to-use interactive user interface. This user interface (UI) provides
users with detailed control over input settings, enabling them to easily de-
fine tasks, configure all core framework components, upload their data, and
leverage powerful tools for data analysis, exploration, and labeling. These
capabilities, which include embedding-based semantic search and visualiza-
tion of records in the input dataset, facilitate comprehensive data exploration
of the input dataset. In addition, it guides users through the HILTS data
labeling process, streamlining the generation and review of labeled data.

To evaluate HILTS, we conduct an experimental evaluation using two
real research questions (described in Examples and with varying
data collection requirements, each with different collection sizes (200k and
700k ads) and complexity levels (from specific to generic questions). Our
experiments demonstrate that HILTS provides a scalable and cost-effective
solution for generating high-quality training data that significantly improves
the quality of models trained by pseudo-labeled data generated by an open-
source LLM. HILTS achieves substantial performance gains, outperforming
state-of-the-art LTS approach by up to 20% in F-1 score and surpassing few-
shot classification with commercial LLMs by over 5% at a fraction of the
cost.

Our main contributions can be summarized as follows:

e We propose HILTS, a novel human-in-the-loop framework that gener-
alizes the LTS approach by integrating user domain knowledge into the
iterative LLM-based pseudo-labeling process, without requiring initial
human-validated data. This framework offers validation set generation
and various sampling strategies to efficiently prioritize samples for hu-
man correction. The main goal is to minimize the amount of work
required of users while increasing pseudo-labeling quality.

e We develop an interactive user interface that implements the HILTS
framework, allowing users to easily define tasks and configure compo-
nents of the core framework. The interface also provides additional
powerful features for data exploration and analysis.

e We perform an experimental evaluation, showing that HILTS provides a
scalable and cost-effective solution for generating high-quality training
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data and outperforms state-of-the-art methods and few-shot classifica-
tion using commercial LLMs.

2. Related Work

Our work on the HILTS framework draws inspiration from and extends

several key areas of machine learning and data management, particularly
those addressing the challenges of data labeling, active learning, and the
application of Large Language Models (LLMs) in data-scarce and imbalanced
scenarios.
Labeling Data to Create Classifiers. Building effective learning-based models,
especially for classification tasks, remains fundamentally constrained by the
availability of high-quality training data. The database community has long
recognized this bottleneck, proposing various approaches to reduce human
labeling effort [27, 28] 29, B0, BI]. Methods like Snorkel [31] introduced
data programming, in which users write heuristic labeling functions, while
Snuba [30] aimed to automate heuristic generation from small labeled sets.
Others, such as Inspector Gadget [29] and Goggles [27], have focused on
weakly labeling image datasets. For a comprehensive overview, see the survey
by Whang et al. [28].

The HILTS framework builds upon and significantly extends the Learning-
to-Sample (LTS) approach [10]. Like LTS, HILTS leverages LLMs for scalable
data labeling, utilizing their broad knowledge as general-purpose classifiers
without requiring users to write explicit labeling functions or provide ini-
tial human-labeled data. Instead, users define the classification task via a
prompt. However, while LTS demonstrated a cost-effective way to use expen-
sive LLMs sparingly by training smaller, cheaper models, HILTS specifically
addresses the inherent limitations of relying solely on LLM-generated pseudo-
labels, such as the introduction of significant noise that can degrade down-
stream classifier performance. HILTS tackles this by introducing a crucial
human-in-the-loop component and sophisticated sampling strategies, ensur-
ing higher labeling accuracy while still maintaining LLMs as the primary
labeling agents.

Online Data Triage and Wildlife Trafficking Detection. Our work directly
applies to data triage problems across numerous domains, where users seek
to identify and prioritize rare items within massive online data collections.
A prime example, and the driving application for HILTS, is the detection



of online wildlife trafficking. This domain highlights the severe challenges in
finding information that meets particular criteria.

Existing research in wildlife trafficking detection, as highlighted by Keskin

et al. [32], consistently points to data scarcity and bias as critical challenges.
Studies like Cardoso et al. [33] and Xu [34] demonstrate the effectiveness of
models focused on specific species (e.g., pangolins) or products (e.g., ivory),
while Kulkarni and Di Minin [35] emphasize the difficulty of obtaining high-
quality training data for broader applications. Extensive efforts have been
made in wildlife image detection [34], 33, 35], 36, 37, 38, 39] and text classifica-
tion for specific wildlife contexts [40] 41]. For a broader perspective, see Tuia
et al. [42]. These studies consistently underscore the need for large train-
ing data volumes and the generalization limitations of current models across
different species or products. HILTS directly addresses these challenges by
providing a scalable and cost-effective solution for generating high-quality
training data, capable of identifying rare instances and improving the qual-
ity of smaller, open-source models, even for highly imbalanced datasets where
domain expertise is crucial.
Active Learning for Imbalanced Data. Dealing with class imbalance—where
the number of examples in different classes varies significantly—is still a
challenge in machine learning [43, [44], [45] [46], 47, [48]. Traditional strategies
typically involve selecting subsets from already labeled instances through
methods like random sampling, over-sampling, under-sampling [49], 45], or
applying clustering algorithms [46]. However, in our context of rare prod-
uct detection, where labels are initially unknown, these methods cannot be
directly applied.

When unlabeled data is abundant and labels are expensive, active learn-
ing (AL) methods offer a solution by iteratively selecting the most informa-
tive data points for an oracle (human or model) to label [50, 5I]. Common
AL strategies include uncertainty sampling [52), 53, [54], which prioritizes in-
stances the oracle is most uncertain about, and diversity sampling [55], which
aims for a representative sample covering a wide range of features. HILTS
combines and extends principles from both class imbalance handling and ac-
tive learning to effectively discover rare instances in large, unlabeled datasets.
Prior work [56] [57, [58] has used active learning techniques to uncover rare
instances, such as Aggarwal et al. [58], who use active learning to iteratively
refine the classifier to promote minority classes. Similar to this work, HILTS
leverages model predictions but distinguishes itself by clustering unlabeled



instances for initial diversity and employing a multi-armed bandit algorithm
to select instances from different clusters to promote the discovery of rare
positive examples. While using similarity measures and core-sets for diver-
sity is a direction for future work, our current approach has proven effective
in deriving high-quality classifiers at a low cost, as demonstrated in Section 5]
LLM-based Active Learning. Recent advancements in LLMs have introduced
novel approaches to reduce the cost and effort of active learning, with meth-
ods categorized into LLM-based selection, generation, annotation, and hybrid
strategies [59]. Methods such as ActiveLLM [60] leverage LLMs to perform
unsupervised instance selection in few-shot settings, reducing reliance on tra-
ditional acquisition functions. Similarly, [61] explores hybrid active learning
for neural machine translation, demonstrating how combining automatic la-
beling with selective human intervention can improve efficiency. Papers such
as FreeAL [62] framework use a fully automated approach, entirely eliminat-
ing the human annotation bottleneck, by establishing an internal feedback
loop where an LLM acts as an active annotator and a smaller language
model (SLM) serves as a student filter, identifying high-confidence pseudo-
labels and feeding them back to the LLM as high-quality examples. HILTS
falls into the hybrid systems category, which includes frameworks such as
NoiseAL [63] that also highlight the benefits of limited human verification
but fall short in identifying the challenges of active learning on imbalanced
data. Our proposed HILTS framework advances this line of work by explicitly
targeting the challenges of imbalanced datasets and rare positive discovery,
where naive reliance on pseudo-labels risks propagating systematic errors.
Unlike selection-focused methods [60] or domain-specific hybrid pipelines
[61], HILTS integrates multi-armed bandit sampling and uncertainty-driven
human verification to ensure label quality, positioning it as a scalable and ro-
bust human—LLM collaborative active learning approach for real-world data
triage tasks.

Using LLMs as Fvaluators and Annotators. The increasing sophistication
of LLMs has positioned them as powerful alternatives to human evaluators
and annotators across a variety of tasks, from evaluating natural language
generation (NLG) systems [64], 65, 66}, [67] to performing general classification
for tasks like column-type annotation and schema matching [68, 69]. In
large-scale data triage applications, such as identifying wildlife-related ads,
the sheer volume of data makes human-only labeling prohibitively expensive.
HILTS strategically leverages LLMs to generate initial pseudo-labels, forming
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Figure 1: HILTS pipeline. The user first provides a dataset and specifies their task
configurations. The process starts with clustering. A validation set is generated and
labeled by an LLM if the user provides no validation set. Next, the active learning process
starts, in which the data is sampled and labeled by an LLM. After the LLM finishes
labeling, a small sample is selected to be reviewed by the user. The yellow dashed boxes
are steps in the pipeline where different choices can be made by the user.

the foundation of its training data creation process.

Human-LLM collaboration. Large Language models (LLMs) have been widely
used for automated data annotation [70]. However, relying solely on LLM-
generated pseudo labels can introduce biases and errors, particularly in spe-
cialized domains like wildlife trafficking detection. Recent studies have ex-
plored human-LLM collaboration to improve annotation accuracy [711 72} [73].
Pangakis & Wolken [74] highlight the importance of keeping humans in the
loop for automated annotation, showing that user oversight significantly im-
proves label quality and model performance. HILTS builds on this insight by
incorporating human validation, ensuring that LLM-generated pseudo labels
are reviewed and corrected before further refining the classifier. This hy-
brid approach allows for cost-effective scaling while mitigating the inherent
limitations of fully automated LLM labeling.

3. HILTS Framework: Hybrid Human-LLM Data Labeling

3.1. Framework Overview

As highlighted in Section [I} finding rare items in large data collections,
such as wildlife products in e-commerce advertisements datasets, is incredibly
expensive and time-consuming. This is partially due to the need to obtain
high-quality labeled training data to train classification models. Manual
labeling is time-consuming, and while foundation models (such as LLMs)
can perform zero-shot classification, doing so directly on massive datasets is
computationally expensive and may lack the required precision for nuanced
tasks compared to specialized models.
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Algorithm 1 HILTS Framework

1: Initialize Budget B, Size of sample s, metric_baseline, and sampling
approach A
2: Murrent <+ Base model

3: C < clustering(D, k), where D is the data collection, k is the number of
clusters

4: Validation Set V' < get_or_create_validation_set(C)

5: Training Data T' < @

6: for i =1 to B do

7 current_sample <— &

8: if i ==1 then

9: for each cluster ¢; in C' do

10: t; < Select a sample from ¢; of size |s/k]|

11: current_sample < current_sample U t;

12: end for

13: else

14: ¢ < thompson_select_cluster()

15: if M, qineq then

16: Cpos.indicess Cnegindices = predict_labels(M, ¢)

17: tpos <— Sample from ¢ at Cpos_indices Of size |p - s|
18: tneg <= Sample from ¢ at Cpeg indices Of size [(1 —p) - 5]
19: current_sample < tpos U tpeg
20: else
21: current_sample <— Sample from c of size s
22: end if
23: end if
24: current_labeled_sample < get_labels(current_sample, A)
25: tpos, tneg <— Split(current_labeled_sample)
26: thompson_update_reward (o5, tneg, €)
27: My ainea < fine_tune(Meyprent, current_sample_labeled)
28: metric < evaluate( My qined, V')
29: if metric > metric_baseline then
30: Mcurrent <~ Mtrained
31: metric_baseline < metric
32: end if
33: end for
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The HILTS framework builds upon the Learn-to-Sample (LTS) approach
[10], a cost-effective strategy designed to generate labeled data to train spe-
cialized classifiers that identify specific data instances in large, imbalanced
datasets. The core idea behind LTS is to strategically leverage powerful
LLMs not for large-scale direct classification, but as pseudo-labelers on a
carefully selected subset of the data. This pseudo-labeled subset is then used
to train smaller, more efficient classification models tailored to a specific task
that can be deployed at a fraction of the cost of repeatedly querying LLMs
for every data point.

Another characteristic of HILTS framework is that it incorporates human-
in-the-loop supervision into the labeling pipeline, thus improving labeling
quality and allowing domain experts to review LLM-generated pseudo-labels.
Crucially, HILTS framework integrates an additional step: sampling a smaller
set of these LLM-labeled instances for human revision. This comprehensive
approach aims to learn a high-performing classification model while minimiz-
ing both human effort and computational costs.

The overall pipeline is outlined in Algorithm [Ifand is visually summarized
in Figure [l The framework starts by setting the datasets, task specification
and key parameters: a predefined total number of iterations B (determined
based on an overall labeling budget), a chosen sample size s for each iteration,
a metric baseline (precision, recall, F1 or accuracy), the sampling approach
A if the user is reviewing the LLM labels and a pre-trained base model (i.e.
bert-base-uncased) that is used as the first model to be fine-tuned (lines 1-2).

The entire data collection D is initially clustered into k groups (line 3).
This step is performed once and aims to promote sampling diversity and
enable exploration across different semantic regions of the data space.

A crucial component of the process is the validation set (V'), which al-
lows the evaluation of the model’s performance throughout the AL iterations.
The function get_or_create_validation_set(C) will get the validation set
provided by the user with human-annotated labels, or create a validation set
from a random sample, selected from each of the clusters, without replace-
ment.

The main component of the algorithm is the active learning process that
runs for B iterations (lines 6-33). The first iteration begins with sam-
ples drawn uniformly across clusters to ensure broad initial coverage (lines
8-12). In subsequent iterations, cluster selection is governed by a multi-
armed bandit (MAB) strategy, specifically, Thompson Sampling with the
function thompson_select_cluster() (line 14), which effectively balances
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exploration (sampling from less-certain or underexplored clusters) and ex-
ploitation (focusing on clusters known to contain relevant data).

If a classifier model has been trained, we use this model to predict the la-
bels of samples within a selected cluster with the function predict_labels(M ,c)
(line 16). A proportion p of the sampled items is then drawn from those pre-
dicted as positive (exploitation), with the remaining (1 — p) drawn from
likely negatives (exploration within the chosen cluster) (lines 17-19). This
biased sampling allows the framework to increase the chances of selecting
rare (positive) samples while still discovering novel data patterns.

In the get_labels(current_sample, A) function, each sampled batch
undergoes pseudo labeling using an LLM and few-shot prompting. The
prompt includes a natural language description of the task criteria and a
few examples to guide the LLM in generating a pseudo-label for each sam-
ple. In cases where user feedback is provided, the function also samples from
the pseudo-labeled data based on three different sampling strategies A: ran-
dom, nn-voting, or uncertainty-based (more details on these strategies will
be discussed in Section [3.4). These samples are shown to the user, who can
then correct or validate the labels (line 24).

Since the LLM can also label the validation set, the labeled and reviewed
data are used to update the reward signal for the multi-armed bandit (MAB)
policy, which guides cluster selection. The MAB reward is now directly based
on the abundance of rare positive instances found within the selected sample.
The function thompson_update_reward(f,es, tneq, €) receives the number
of positive samples t,,, and negative samples t,,., selected from cluster ¢ (lines
25-26). This reward strategy means the MAB learns to identify and sample
from clusters that are rich in the types of data desired for training (e.g., clus-
ters containing a higher density of positive examples or a good mix), rather
than relying solely on the indirect signal of incremental model performance
improvement, since the model is now being evaluated on a validation set that
are not generated from “golden” label. This ensures that the active learning
process effectively discovers and includes sufficient quantities of the target
rare class examples, providing a stronger foundation for subsequent human
review and final model training.

Finally, the labeled batch is used to fine-tune the current classifier (line 27).
The newly trained model is evaluated on the validation set (line 28), and if
its performance improves over the established baseline, the model is updated
and carried forward to the next iteration (lines 29-32).

By structuring sampling and training as an iterative loop guided by real-
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Figure 2: The HILTS framework generalizes LTS by introducing a human-in-the-loop
at key parts of the data labeling process, and providing flexible options for supporting
which samples are shown to the human labelers. Gray boxes represent the original LTS
implementation, while the rest are introduced in HILTS.

time model feedback and active selection, HILTS generalizes the LTS ap-
proach into a modular and extensible framework. While the core principles
of the Learn to Sample (LTS) algorithm remain foundational, HILTS offers
flexibility in how certain key components are handled, enabling different in-
stantiations based on the availability of humans to label data and application
needs. As shown in Figure [2] this design accommodates various sources of
model validation set (e.g. Human labeling or LLM labeling), an option to
review LLM labels (e.g. No review or Human review), and different pseudo-
labels sampling methods (e.g. Random, NN voting, and Uncertainty). The
three design components will be explained in depth in Sections [3.2] 3.3}, [3.4

3.2. Validation Set

Human-Labeled Validation Data. Figure [2| shows all the possible instantia-
tions of HILTS framework. One such instantiation, reflecting the approach
of the original LTS framework, evaluates model performance during active
learning iterations against a small set of manually labeled “validation gold
data”. This method uses a reliable human-labeled benchmark to track model
improvement and calculate the reward signal for cluster selection.

LLM-Labeled Validation Data. The approach primarily adopted within the
HILTS framework for its automated efficiency adapts to how the validation
data is obtained. Instead of relying on a potentially costly, manually curated
“gold” set for validation, a validation dataset is automatically generated.
This comprehensive sample, spanning a fixed number of ads from each of the
clusters, is then labeled using an LLM, similar to how training samples are
pseudo-labeled. This LLM-labeled validation set, created once at the begin-
ning, serves as a benchmark to evaluate the improvement of the incrementally
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trained model in each active learning iteration. This approach ensures that
the validation set is representative of the diversity across all clusters and can
be generated without requiring additional human labeling effort specifically
for validation.

3.8. LLM Pseudo-Labels Review

Even though HILTS framework is created to address the need for humans

to curate possible LLMs’ errors in the labeling process, it also allows for
a fully automated version where the training data is created without any
human intervention. As already demonstrated with the LTS algorithm, the
ability of Large Language Models (LLMs) to perform classification tasks in a
zero-shot or few-shot manner presents a compelling opportunity to automate
the labor-intensive process of data labeling.
Enhancing Data Curation with Human-in-the-Loop. However, relying solely
on this approach to generate training data faces some limitations, such as
the introduction of significant noise, which can limit the performance of the
downstream classifier. In such cases, HILTS framework integrates the human
as a critical quality control layer, directly engaging them in validating and
correcting LLM-generated labels. In those cases, the framework includes
three primary sampling methods to select which data will be provided to the
user for manual revision. The sampling is performed over the data selected
on that specific cycle, after being labeled by the LLM.

3.4. Pseudo-Labels Sampling Methods for Human Review

Rather than presenting users with all the pseudo-labeled data for verifica-
tion (e.g., 200 data items labeled by an LLM in our experiments, as shown in
Section , HILTS supports different strategies to select the most informative
samples that users could assess to improve the labeled data.

Random Sampling Selection. In this simple approach, a batch of samples
is randomly selected from items that have already been pseudo-labeled by
the large language model (LLM). The batch size is a parameter defined by
the user. The goal is to provide the user with an unbiased sample of the
original data distribution.

Nearest Neighbor Voting Sample Selection. We also introduce a verifi-
cation strategy that leverages user-reviewed data and embedding-based simi-
larity. For each LLM-labeled data point, we retrieve a list of similar examples
using precomputed embeddings and vector search. The similarity scores are
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converted to distances, and the resulting sorted distances are analyzed us-
ing the Kneedle algorithm [75] to determine an appropriate cutoff K. This
adaptive selection ensures that only a meaningful set of neighbors—those
most informative yet diverse—are used. A majority vote over the labels of
the top-K neighbors is then compared to the LLM’s prediction. If the votes
contradict the LLM label, the data point is flagged for user revision. If the
total number of flagged items is insufficient to meet a user-defined sample
size, additional examples are chosen via random sampling.

Let Driv = {(zi,9:) 1, be the set of data points labeled by the LLM,
and let Dyser = {(75,y;)}j2; be the set of data points labeled and confirmed
by the user in the previous iterations. Each data point x has a precomputed
embedding ¢(z) € R<.

1. For each x; € Dypwm, retrieve its nearest neighbors from D, using
vector search:

N(z;) = {(x},y;) € Duser | x; is among top similar points to z;}
2. Compute distances using cosine similarity:
d(zi,z;) =1 — cos(o(z;), p(x)))
3. Sort the distances in increasing order:

di <dy <---<dy

4. Use the Kneedle algorithm to determine the cutoff K such that the
top-K neighbors capture the “knee” in the distance curve:

K = Kneedle(dy,...,dy)

5. Let the top-K neighbors be:

N (i) = {(2j,y;) € N(z:) | j < K}
6. Perform a majority vote over their labels:

i = MajorityVote({y; | (z;,v;) € Nk (r:)})
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7. If §; # y;, then z; is flagged for user revision.

8. If fewer than the desired number of flagged points are selected, fill the
remaining quota using uniform random sampling from Dypy.

Random sampling is performed in the first iteration, since no data is
labeled at the time. For this approach, the idea is to increase the chances of
correcting more samples by comparing them to previously user-verified data.

Uncertainty-Based Sample Selection. For the uncertainty-based sam-
pling approach, the model fine-tuned in the previous iteration is used to infer
a label for the set labeled by the LLM. The model returns the logits and a
softmax that are applied to retrieve the probability of each class. The most
uncertain data is ranked, and the top K (which is also a number pre-selected
by the user) is returned for verification.

Let M; be the classifier model fine-tuned at iteration ¢, and let Dy =
{z;}"_, be the set of unlabeled samples with LLM-predicted labels.

1. For each x; € Drim, compute the class probability distribution using
the model’s softmax output:

p; = softmax(M,(z;)) € [0,1]¢
where C'is the number of classes ( C' = 2 for binary classification).
2. Define the uncertainty score for x; as:
u(z;) = |max(p;) — 0.5|

This formulation reflects how close the model is to being undecided
(maximum uncertainty at 0.5) and is lowest when the model is most
uncertain.

3. Rank the data points by increasing uncertainty:
Dsorted = sort (DLLM7 by u(trz))

This ensures that the most uncertain (i.e., lowest (u(z;)) samples come
first and are selected for user verification.

4. Select the top-K most uncertain samples for user review:

Duncertain = {xz S Dsorted | ? S K}
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Figure 3: Initial HILTS Settings and Task Description Interface. (a) illustrates the user’s
ability to upload datasets and (b) configure core parameters such as budget, sample size,
LLM model, base model for fine-tuning, evaluation metric, and clustering algorithm.

This approach prioritizes samples that the model is least confident about,
thus refining the decision boundary and improving the performance on am-
biguous cases.

4. The HILTS System

We develop the HILTS system that implements the proposed framework
described in Section [3.1] In this system, we aim to support domain experts in
building machine learning classifiers from their unlabeled dataset, providing
an interactive user interface that allows users to: (1) describe a classification
task and set HILTS parameters, (2) review pseudo-labels, (3) track model
performance, and (4) explore data.

Classification task description and HILTS parameters. As illustrated
in Figure (a), the user first uploads all available datasets, including the pri-
mary unlabeled data and optional validation and test sets. After the upload,
a configuration interface for HILTS settings appears (shown in Figure [3{(b)),
offering a range of customization options. The most important setting is the
task description, which serves as a prompt for the LLM, defining the specific
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¥ Check Labels

N Epoch Accuracy F1 Precision Recall Loss

0.302 0.244 0.140 0.957 0.767

0.245 0.230 0.130 0.957 0.789

0.205 0.224 0127 0.979 0.804

0193 0.222 0125 0.979 0.800

0.247 0.230 0131 0.957 0.765

0.357 0.237 0138 0.851 0.732

Figure 4: HILTS interface for (a) flag for users to review and correct LLM-generated
pseudo-labels. (b) provides a list of cards representing each product with the LLM label
already selected, and (b) provides the model results during the training phase.

classification goal for the data. Crucially, users can choose the “Sample Size”
to manually review during the human-in-the-loop phase. This parameter
provides direct control over the level of human effort and intervention, allow-
ing for a balance between cost-effectiveness and desired accuracy. For tasks
requiring higher precision, a larger number of samples can be selected for
expert review. Users can also choose the “Sampling Version” — the method
used to choose pseudo-labeled data for human review (Section . Finally,
users can configure the underlying algorithm details, including the Large
Language Model (LLM) used for automated labeling and the base machine
learning model that will be fine-tuned during the active-learning phase. This
level of control allows users to balance computational resources, API costs,
and the desired level of labeling accuracy for their specific domain, ensuring
the most appropriate components for the task at hand.

Pseudo-labels review. If the user configures the system to include human
review (by setting a minimum number of samples to review and the algo-
rithm for sampling), the interface will display a “User Labeling” label after
each LLM labeling iteration, as illustrated in Figure {4| (a). Upon clicking
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the “Check Labels” button, the data selected by one of the three sampling
approaches (described in Section will be presented on individual cards
as seen in Figure [f(b). Each card showcases the item’s text, its associated
image (if available), and any other relevant information extracted from the
item’s metadata. The initial label displayed on each card (a green thumbs
up for positive and an orange thumbs down for negative) is the pseudo-label
provided by the LLM. Users can then modify this label if they disagree with
the LLM’s prediction. Once all labels have been reviewed, the user can click
“Restart” to re-initiate the active learning process with the corrected data
incorporated.

Model performance tracking. Upon restarting the active learning pro-
cess, the model initiates its training phase, using a combined dataset of user-
corrected data and LLM-labeled samples. Training results for each epoch
are displayed on-screen. Subsequently, evaluation results are presented in a
final metrics bar chart, drawing from the test set—if provided—or using the
performance of the validation set, as illustrated in Figure [ff(c).

Data exploration. In scenarios where users wish to generate additional
labeled data outside the framework’s active learning loop, the HILTS system
offers dedicated data exploration components. These components display
data in the same intuitive card format used for reviewing pseudo-labels, al-
lowing users to add labels directly. Users can perform a random search to get
a general idea about the data, or a keyword search to find more specific data
via string matching. For example, as illustrated in Figure (a), the user can
type the keyword “gator”, and the system will return a list of data contain-
ing that term. If the user wants to find similar items to any of these results,
they can click the “Find Similar” button. This action triggers a search
for comparable items based on their smallest embedding vector distances,
thereby facilitating a deeper exploration of the dataset, as demonstrated in
Figure [p|(b).

Implementation Details. HILTS is implemented in Python 3.11.2 and the
web-based interface is implemented with svelte.js [76] (code is publicly avail-
ableﬂ). The embeddings generated for each data point are derived from CLIP
embeddings (clip-vit-base-patch32) [77], which are numerical represen-
tations of images and text that exist within the same semantic space. The
CLIP method generates distinct embeddings for both the image and text

'https://github.com/VIDA-NYU/mmdx-wildlife/tree/wildtracker
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Figure 5: The HILTS System’s Data Exploration Interface. (a) illustrates the Keyword
Search functionality, allowing users to find specific data points via string matching (e.g.,
‘gator’). (b) demonstrates the 'Find Similar’ feature, which leverages embedding distances
to discover comparable items.

components of an advertisement, if available, and we compute their mean
to form a single, comprehensive embedding. If the image is not available,
only the text embedding is used. While CLIP embeddings have been widely
adopted to embed images and text [78], an alternative embedding method
can easily be substituted. The embeddings are stored and queried using
LanceDB [79]. To make it easy to deploy, HILTS is entirely containerized us-
ing Docker, and the dataset and images (if available) can be stored locally or
on an S3-like storage. HILTS applies LTS using its publicly available codeEl

5. Experimental Evaluation

As introduced in Section [l the online trade of wildlife products consti-
tutes a significant global issue, making the data triage task to accurately
identify these criminal activities particularly challenging. To evaluate our
implementation of HILTS, we leverage a real-world dataset crawled from
e-commerce platforms [2I]. Our experiments are designed to explore two
distinct research questions, reflecting the complexity and varying data char-
acteristics highlighted in Example (Animal Product Identification) and
Example (Leather Products) from Section

Zhttps://github.com/VIDA-NYU/LTS
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Validation Set Label Review Sampling

LTS Manual None None
HILTS-Auto LLM None None
HILTS-Random LLM Human Random
HILTS-NN-Voting LLM Human NN-Voting
HILTS-Uncertainty LLM Human Uncertainty

Table 1: Summary of experimental configurations under different instantiations of the
HILTS framework. The table outlines whether the validation set is manually labeled or
generated by the LLM, whether pseudo-labels are reviewed by the user, and the sampling
method used for selecting data for user review when applicable.

Data Collection. We utilize the open-source ACHE crawler to conduct a
scoped crawl [80], in which given a list of seed webpages, the crawler recur-
sively follows all hyperlinks that remain within a specified domain.

Animal products. The animal product ads collection consists of 699,907 valid
listings, collected over one month from 33 different e-commerce platforms.
The crawl targets ads related to mammals, birds, sharks and reptiles, and in-
cludes items associated with 263 endangered species listed under CITES [81].
Leather products. To compile seeds for leather-related products, we use the
names of 48 animals identified in a dataset of seized wildlife items and their
intended uses [82]. Using these terms, we retrieve ads from eBay [83], result-
ing in a collection of 152,495 valid listings.

By evaluating HILTS across these two distinct real-world scenarios, we
aim to demonstrate its effectiveness in handling varying dataset sizes, class
imbalances, and semantic complexities, showcasing its adaptability and ef-
ficiency in generating high-quality labeled data for challenging classification
tasks.

5.1. FExperimental setup

We compare various algorithmic configurations of the HILTS framework,
as outlined in Table[I} The results are presented in Tables [2] and [3], focusing
on metrics such as precision, recall, accuracy, and F'1-score.

Our primary baseline for all new HILTS configurations is the original LTS
approach, as it has already demonstrated superior performance compared to
various sampling methods and other active learning algorithms [10].

These instantiations cover a spectrum of approaches, from fully auto-
mated to human-in-the-loop strategies with different sampling methods:
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F1 7

Accuracy Precision Recall

Correct
HILTS-Random 0.946 0.803 0.970 0.879 28/400
HILTS-NN-Voting 0.938 0.850 0.842 0.846 122/400
HILTS-Uncertainty 0.926 0.762 0.921 0.834 63/400
HILTS-Auto 0.926 0.754 0.941 0.837 -
LTS 0.830 0.548 0.911 0.684 -

Table 2: Performance comparison of HILTS-Auto, LTS, HILTS-NN-Voting, HILTS-Random,
HILTS-Uncertainty for the Animal Products use case.

LTS: This refers to the original LTS algorithm, characterized by its re-
liance on a manually curated validation set and no direct human label review
within the iterative process for training data generation.

HILTS-Auto: This configuration represents a fully automated approach in
which the validation set for monitoring performance is generated by an LLM
and there is no manual label review. This setup evaluates a fully automated
HILTS and how well LLM can generate labels for a classification task.

HILTS-Random, HILTS-NN-Voting, and HILTS-Uncertainty: These three in-
stantiations represent different human-in-the-loop scenarios within the HILTS
framework. In all these cases, the validation set is generated by an LLM, and
human experts are involved in reviewing and correcting labels. They differ,
however, in their sampling strategies for presenting examples to the human
for review as explained in Section [3.4]

For the pseudo-labeling task, we utilize an open-source Large Language
Model (1lama3-70b) to generate labels for the training samples and the
validation set. The base classifier, subsequently fine-tuned using the LLM-
labeled data, is a text-based model (bert-base-uncased).

All five experiments involve an iterative active learning process that un-
dergoes ten iterations. For the experiments involving human revision, 200
ads are pseudo-labeled by an LLM, of which 40 samples are displayed to the
user in every iteration, with a total of 400 samples reviewed at the end.

5.2. Results

Use Case 1: Animal Products. Based on the results for the “Animal
Products” use case shown in Table [2, HILTS-Random variant achieves the
best performance with an F1l-score of 0.879, driven by its leading accuracy
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#

Accuracy Precision Recall F1 Correct
HILTS-Random 0.850 0.812 0.853 0.832 55/400
HILTS-NN-Voting 0.730 0.665 0.766 0.712 49/400
HILTS-Uncertainty 0.784 0.690 0.922 0.790 54/400
HILTS-Auto 0.666 0.619 0.610 0.614 -
LTS 0.514 0.473 0.986 0.639 -

Table 3: Performance comparison of HILTS-Auto, LTS, HILTS-NN-Voting, HILTS-Random,
HILTS-Uncertainty for Leather Products use case.

(0.946) and notably high recall (0.970), while maintaining strong precision
(0.803). This indicates a highly effective reduction in false positives while
capturing the most relevant ads.

In comparison, the fully automated HILTS-Auto variant achieves an F1-
score of 0.837, demonstrating strong performance even without human inter-
vention. The original LTS shows significantly lower overall performance, with
an F1-score of 0.684, underscoring the substantial benefits of the algorithmic
enhancements integrated within the HILTS framework.

Use Case 2: Small Leather Products. The second use case, detailed in
Table [3] focuses on the “Leather Products” data collection, with LLAMA3-
70b as the pseudo-labeling LLM. The HILTS-Random variant consistently
achieves the highest F1-score, indicating that user verification is crucial in
generating high-quality labeled data.

In comparison, the fully automated HILTS-Auto variant achieves an F1-
score of 0.614, and the original LTS framework, while displaying an excep-
tionally high recall of 0.986 for leather products, exhibits a considerably lower
precision (0.473), leading to an F1l-score of 0.639.

These results for the “Leather Product” use case highlight that the HILTS
framework variants, particularly those integrating human review with effec-
tive sampling strategies like random selection, significantly outperform the
fully automated or original L'T'S approaches.

HILTS-NN-Voting vs LLM-Only. Overall, the results indicate that the al-
gorithmic modifications implemented in the HILTS framework (e.g., changes
to validation data and reward calculation, as discussed in Section con-
sistently produce effective downstream classifiers for the “Animal Products”
and “Leather Products” tasks. This suggests that these algorithmic enhance-
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ments contribute to generating higher-quality training data even before any
human-in-the-loop validation or correction is applied, but are further im-
proved when human expertise is integrated into the setting.

To better investigate the specific impact of human label correction, Fig-
ure [6] provides a more granular comparison of the HILTS-NN-Voting approach
(representing a setting with human-corrected labels) and the HILTS-NN-
Voting-non-corrected labels (relying solely on LLM-derived labels). For this
ablation study, we examine the HILTS-NN-Voting variant since it incorporates
the largest number of corrected data points (a total of 122 samples) among
the HILTS framework approaches that included human intervention.

The results report the mean scores from five training runs for each batch,
where we incrementally add 200 new labeled data items for each fine-tuning
iteration. The cumulative number of human-corrected samples gradually
increases, from four corrected samples in the first interaction to a total of
122 corrected samples at the end. In each interaction, the user reviews 40
samples.

For the full training (where the model is trained once with all 2000
samples), HILTS-NN-Voting consistently outperforms HILTS-NN-Voting-non-
corrected-labels (the solid purple and blue lines in Figure[6). Specifically, the
F1-score increases from 0.80 (LLM-alone baseline) to 0.85 (human-corrected).
Similarly, accuracy improves from 0.90 to 0.94, and precision rises from 0.69
to 0.85. It is worth noting, however, that the LLM-alone model achieves a
higher recall (0.94) for the full training set compared to the human-corrected
model (0.84). This suggests that while human correction significantly en-
hances precision and overall Fl-score, leading to a more reliable identifica-
tion of the rare class, it may involve a trade-off in identifying every single
instance of the rare class in this specific context.

Specialized Models vs. Foundation Models. Table [4| presents a com-
parison of the specialized text-based models derived from our HILTS frame-
work (specifically, HILTS-Random, HILTS-NN-Voting, and HILTS-Uncertainty,
trained using LLAMA3-70b pseudo-labels) and the few-shot classification
performance of GPT-4 applied directly to the test set. It is crucial to note
the substantial difference in scale between these models: GPT-4 is estimated
to have parameters in the order of trillions, whereas a fine-tuned model of
BERT typically has hundreds of millions of parameters, in our case, the
bert-base-uncased has 110M million, making our final model significantly
more resource-efficient.
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Figure 6: Metrics comparison between HILTS-NN-Voting approach vs HILTS data with no
human corrected labels (LLM-Only) for models fine-tuned incrementally with 200 samples.

26



Animal Products Leather Products

GPT4 0.827 0.850
HILTS-Random 0.879 0.832
HILTS-NN-Voting 0.846 0.712
HILTS-Uncertainty 0.834 0.790

Table 4: Performance comparison (using F-1 measure) of the text-based model trained
using HILTS-Random, HILTS-NN-Voting, and HILTS-Uncertainty against classification per-
formed by GPT4. The best performance for each task is highlighted.

For the Animal Products task, all variants of the HILTS framework out-
perform direct few-shot classification by GPT-4, with the HILTS-Random
variant achieving the highest F1-score of 0.879. This indicates that even with
LLAMA3-70b generating the pseudo-labels, our human-in-the-loop special-
ized models are more effective for this specific domain.

For the Leather Products task, GPT-4 achieves a high F1-score of 0.850
in a few-shot setting, with HILTS-Random achieving a competitive F1-score
of 0.832. This demonstrates that models trained using our HILTS approach,
leveraging an open-source model (LLAMA) pseudo-labeling, can achieve
comparable, and in the case of Animal Products, superior performance to
a much larger and more expensive foundation model like GPT-4 for spe-
cific downstream tasks. This underscores the cost-effectiveness and task-
specificity benefits of our framework, enabling the deployment of high-performing
models at a fraction of the computational cost and parameter count of direct
foundation model inference.

5.2.1. Analysis of Validation Set Parameters

We carried out a sensitivity analysis to assess the impact of the valida-
tion set’s size and class composition on HILTS’s performance. Our results,
presented in Figure [7] were obtained by executing HILTS-Auto for both the
animal and leather datasets. In this experiment, we fix a budget for the train-
ing data while varying other parameters. To keep costs reasonable, we’ve
restricted this budget to 1000 labeled training samples by the LLM, repre-
senting only 50% of the amount utilized in earlier sections. With this fixed
budget, we systematically varied two key properties of the validation set:

e Validation Set Size: We tested a range of small validation sets from 50
to 500 samples.
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Figure 7: F1 scores of different validation size/balance used on HILTS-Auto across domains.

e Positive Class Composition: We adjusted the ratio of positive (rare
event) to negative samples in the validation set, from highly imbalanced
(10/90) to a more balanced (50/50) configuration.

We also included the scenario where no validation set was used to evaluate the
performance of the model during the data sampling process. That means that
for each iteration, the model trained is used in the next cycle, independently
of its quality.

Our results demonstrate a positive finding regarding HILTS’s robustness:
As observed in figure [7a] the heatmap for the animal dataset shows that
HILTS’ performance (F1 score) remains consistently high and fairly stable
across different validation set sizes, including the smallest ones, i.e., the
dataset of size 100 had the best performance overall with 0.777 Fl-score
in the experiment with a 50/50 balanced ratio. Furthermore, the algorithm
is not highly sensitive to the exact class composition of the validation set,
maintaining strong performance even when the validation set itself is imbal-
anced, i.e., the dataset 500 performed second best with a class composition
of 10/90. Figure [7b| shows that a similar trend is observed in the leather
dataset, reinforcing our findings. The model’s performance shows a clear
robustness against a small or incomplete validation set.

This study confirms that while a validation set is needed for metric
tracking, HILTS’ core strength lies in its ability to build a high-quality,
large pseudo-labeled training set through intelligent active learning. Because
HILTS’ training process is not overly dependent on the initial quality of the
validation set, it can achieve high performance even when the validation set
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suffers from the same scarcity and imbalance issues present in the broader
problem space.

6. Conclusion

In this paper, we introduce the HILTS framework and its associated
system, a novel human-in-the-loop approach built upon the foundational
principles of the LTS algorithm. Our core contribution lies in providing
a cost-effective and scalable methodology that harnesses the power of Large
Language Models (LLMs) for automated training data labeling, strategically
augmented by human expertise. This synergistic combination is particularly
effective for data triage tasks, especially in challenging scenarios character-
ized by vast, unlabeled data with highly imbalanced classes.

Our experimental evaluation on identifying “Animal Products” and “Leather
Products” among large collections of ads demonstrates the superior per-
formance of various HILTS framework instantiations. We show that the
algorithmic modifications integrated into HILTS consistently produce high-
quality labeled data for downstream classifiers, reflected in improved F1-
scores, accuracy, and precision, compared to purely automated or basic LTS
approaches. Our findings highlight the significant impact of integrating hu-
man correction within the labeling process— even if LLM-only validation pro-
vides a strong baseline, human feedback acts as a vital mechanism for refining
data quality, mitigating LLM errors, and enhancing model robustness, par-
ticularly in identifying elusive patterns of illicit trade.

The flexible user interface of the HILTS allows practitioners to define
specific tasks, manage validation and test datasets, and fine-tune various al-
gorithmic parameters, including the choice of LLM and base model, as well
as the sampling method for human review. We believe that HILTS can be
a valuable and powerful tool for data scientists. Beyond combating wildlife
trafficking, this adaptable framework holds immense promise for applications
in other specialized domains facing similar “needle in a haystack” data chal-
lenges, such as the detection of other forms of illicit content, fraud, or rare
events within large datasets. Future work will explore further optimizations
for human-Al collaboration and the integration of even more complex data
types.
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