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Abstract The quality of a Web search engine is influenced by several factors, includ-

ing coverage and the freshness of the content gathered by the web crawler. Focusing

particularly on freshness, one key challenge is to estimate the likelihood of a previ-

ously crawled webpage being modified. Such estimates are used to define the order

in which those pages should be visited, and thus, can be exploited to reduce the cost

of monitoring crawled webpages for keeping updated versions. We here present a

Genetic Programming framework, called GP4C – Genetic Programming for Crawl-

ing, to generate score functions that produce accurate rankings of pages regarding

their probabilities of having been modified. We compare GP4C with state-of-the-

art methods using a large dataset of webpages crawled from the Brazilian Web. Our

evaluation includes multiple performance metrics and several variations of our frame-

work, built from exploring different sets of terminals and fitness functions. download

cycles. We evaluate GP4C using the ChangeRate and Normalized Discounted Cu-

mulative Gain (NDCG) metrics as both objective function and evaluation metric. We

show that, in comparison with ChangeRate, NDCG has the ability of better evaluating

the effectiveness of scheduling strategies, since it is able to take the ranking produced

by the scheduling into account. objective function to be maximized in the learning to

schedule process, as opposed to the priorly used ChangeRate metric.

Keywords Web crawling · scheduling functions · Genetic Programming

A. S. R. Santos · C. R. de Carvalho · J. M. Almeida · N. Ziviani

Department of Computer Science, Federal University of Minas Gerais, MG, Brazil

E-mail: {aecio.solando, cristiano.dcc}@gmail.com,{jussara, nivio}@dcc.ufmg.br

E. S. de Moura · A. S. da Silva

Institute of Computing, Federal University of Amazonas, AM, Brazil

E-mail: edleno@icomp.ufam.edu.br, alti@dcc.ufam.edu.br



2 Aécio S. R. Santos et al.

1 Introduction

The quality of a Web search engine depends on several factors, such as the content

gathered by the web crawler, the ranking function that produces the document order-

ing, and the user interface. By its turn, the success of the crawling process of a web

search engine depends on factors such as the coverage of the crawl, the policy used

to select pages to collect, and the freshness of the pages. In this work we focus on

freshness, i.e., on the design of policies for scheduling webpage updates.

Web crawlers usually have access to limited bandwidth and their scheduler should

periodically sort a large list of known URLs to define the order in which they should

be visited. In this scenario, performing a full scan of all prior crawled webpages

to assure database freshness is unfeasible. To avoid that, crawling architectures (e.g.,

VEUNI [Henrique et al., 2011]) use a score function to assign a weight to each known

webpage (URL). Only the top k pages, k being a parameter, are taken to be visited.

After crawling the k pages, the scheduler starts a new crawling cycle, using the score

function to rank the known pages to be visited.

In this context, a key challenge faced when designing scheduling policy regarding

freshness is to estimate the likelihood that a previously crawled webpage has been

modified on the web, so that the scheduler may use this estimation to determine the

order in which those pages should be visited. A good estimation of which pages are

more likely of having been modified allows the system to reduce the overall cost of

monitoring its crawled webpages for keeping updated versions. We note that the final

scheduling should also take other information into account, such as estimates of page

importance to the users, and the cost to download a page. However, the system can

benefit from good estimations of the likelihood that a page has been modified when

determining its final scheduling.

We here focus on the problem of estimating the likelihood that a webpage has

been modified. To tackle this problem, we propose a novel machine learning based

approach to generate score functions that allow schedulers to produce accurate rank-

ings of pages regarding their probability of having been modified on the web when

compared to the previously crawled version. Prior work has used machine learning

techniques to related tasks (e.g., grouping pages with similar change behavior [Tan

and Mitra, 2010], and predicting a page’s change behavior [Radinsky and Bennett,

2013]), but none has applied them to build those score functions. Specifically, we

investigate the potential of using a Genetic Programming (GP) framework, called

GP4C – Genetic Programming for Crawling, to learn these score functions.

We evaluate our solution on a large webpage dataset collected from the Brazilian

Web (.br domain), using the ChangeRate [Douglis et al., 1997] and Normalized Dis-

counted Cumulative Gain (NDCG) [Järvelin and Kekäläinen, 2002] metrics as both

objective function to be maximized in the learning to scheduling process and evalua-

tion metric. Whereas ChangeRate has been previously used to evaluate the ability of

a scheduler to detect webpage updates, the use of NDCG in this context is new. We

argue that the NDCG metric has the ability of better evaluating the effectiveness of

scheduling strategies, since it is able to take the ranking produced by the scheduling

into account. To that end, it considers as relevant the pages that were modified, and

measures the distance of the scheduling derived from the learned score function from
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an ideal oracle that correctly guesses all the pages that should be visited and those

that should not be visited. In contrast, ChangeRate considers any permutation of the

resulting ranking set as equally good. Since the selected metric guides the learning

process to generating new crawling strategies, the use of a better metric allows us to

better evaluate final results and derive better ranking functions when used as objective

function.

Our experimental results show that GP4C outperforms existing score functions

[Cho and Garcia-Molina, 2003; Tan and Mitra, 2010], rendering it a viable alter-

native to solve the addressed problem and opening opportunities for future work.

Moreover, our results also show the superiority of the final score functions produced

when NDCG is used as objective function, compared to ChangeRate: the results of

the former are better in terms of both evaluation metrics.

In sum, our main contributions are:

– a novel machine learning based approach to generate score functions to estimate

the likelihood that a webpage has been modified, a key component for designing

effective freshness driven scheduling functions;

– a flexible GP framework to evolve effective score functions that optimize an ob-

jective function and considers features related to the behavior of page changes;

– a thorough evaluation of the benefits of using our framework over state-of-the-art

strategies;

– the adoption of the NDCG metric as both evaluation metric and objective function

to be maximized in the learning to scheduling process.

A preliminary version of this work was presented in Santos et al. [2013]. We here

greatly extend this prior work into three directions: (1) we add new terminals to the

GP framework, (2) we propose the use of NDCG as an objective function to be max-

imized, and (3) we extend the experimental evaluation to include one new metric as

well as new scenarios. Specifically, whereas in Santos et al. [2013], we explore only

three basic features as terminals and use only ChangeRate as both objective function

and evaluation metric, we here also include five previously proposed estimators of

page change probability as terminals and use NDCG as both objective function and

evaluation metric. Our experimental evaluation shows that both extensions lead to

improvements over our previous solution.

The remainder of this paper is organized as follows. In Section 2, we review the

related literature on crawling. In Section 3, we present a high-level description of the

crawler architecture considered in our study. In Section 4, we present the GP frame-

work and discuss individuals, terminals, functions in the inner nodes and the fitness

functions used in our study. In Sections 5, we present the experimental evaluation

of our approach. Finally, in Section 6, we present our concluding remarks as well as

directions for future research.

2 Related Work

As previously mentioned, page freshness is a key factor in the success of a crawling

process. Regarding page freshness, one goal of previous studies is to maximize the
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weighted freshness WF (t) of the local repository of pages at time t, defined as:

WF (t) =
∑

p∈C(t)

w(p) · f(p, t),

where C(t) denotes the set of pages crawled up to time t, w(p) denotes a numeric

weight associated with page p, and f(p, t) is the freshness of page p at time t [Olston

and Najork, 2010]. We here assume that C is static (i.e., there is no dependence on t),
and, like Olston and Najork [2010], that each page p ∈ C has a stationary stochastic

pattern of content changes over time. We discuss freshness maximization focusing

on the problem of scheduling, which is to produce a crawl order that adheres to the

target re-visitation frequencies as closely as possible.

The freshness of a set C of webpages can be estimated by the average number of

fresh pages in C at time t. Like Cho and Garcia-Molina [2000, 2003]; Tan and Mitra

[2010], we consider a binary freshness model where the freshness of page p at time t
is 1 if the copy of p is identical to the live copy, or 0, otherwise.

Probabilistic models have been proposed to approximate the history and predict

webpage changes. For example, Coffman et al. [1998] proposed to model the occur-

rences of changes on each page p by a Poisson process with parameter λp changes per

time unit. Cho and Garcia-Molina [2003] also investigated estimators for the change

frequency of elements that are updated autonomously, in various scenarios. In par-

ticular, they showed that a web crawler can achieve improvements in freshness by

setting its refresh policy to visit pages proportionally more often based on their pro-

posed estimator. This estimator, which is used as baseline in this work, is defined in

Section 5.1.

Cho and Ntoulas [2002] proposed a sampling-based method to detect webpage

changes based on the number of pages that changed in a sample downloaded from

the web site. However, the sample may be too coarse to represent all pages of the

site. Tan and Mitra [2010] solved this problem by grouping pages into k clusters with

similar change behavior, and sorting the clusters based on the mean change frequency

of a representative cluster’s sample. They explored features extracted from the web-

page’s content, web link structure, and search logs to effectively predict webpage

change patterns. They proposed four strategies to compute the weights associated

with a change in each download cycle. These strategies are used as baselines in this

work, and are further described in Section 5.1. Our work differs from Tan and Mitra

[2010] as our approach is not based on sampling, but rather relies on machine learn-

ing to build a score function that allows the scheduling of webpage updates. Once the

score function has been learned, which is done off-line, it can be applied effectively

and efficiently, thus allowing large scale crawling using the architecture presented in

Section 3.

Radinsky and Bennett [2013] proposed a webpage change prediction framework

that uses, in addition to content features, the degree and relationship among the pre-

diction page’s observed changes, the relatedness to other pages, and the similarity

in the kinds of changes they experienced. We here do not explore such features as

our goal is to assess the potential benefits of using GP to build the score functions,

which, to our knowledge, has not been done yet. Thus, we only use features related
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to whether the page changed or not during each cycle. However, given the flexibility

of GP, our approach can be easily extended to include other features in the future.

Fetterly et al. [2009] introduced an evaluation framework measuring the maxi-

mum potential Normalized Discounted Cumulative Gain (NDCG), which is achiev-

able using a particular crawl. The framework was based on relevance judgments

pooled from multiple search engines, allowing the evaluation of different crawl poli-

cies. We here also adopt NDCG. However, unlike in Fetterly et al. [2009], where

NDCG was used only to evaluate the search engine results using different schedul-

ing functions, we use NDCG both as objective function to be maximized in the GP

process and as evaluation metric of the derived scheduling functions.

In this article we adopted GP as the tool for learning scheduling functions. We

choose to adopt GP because scheduling functions can be ultimately seen as ranking

functions. Several previous studies in the literature (de Almeida et al. [2007a]; Fan

et al. [2004a,b]; Silva et al. [2009]; Trotman [2005]) apply GP to discover ranking

functions for search engines. For instance, Fan et al. [2004c] successfully applied GP

to find ranking functions optimised to specific queries in the information routing task.

Recent research comparing several alternative machine learning methods for learning

ranking functions has indicated that GP produces results that are quite competitive

when compared to other state-of-art methods (da Costa Carvalho et al. [2012]). In

particular, GP has the advantage of producing ranking formulas that can be easily

integrated to the target system, in our case the scheduling system. As far as we know,

the usage of GP for learning scheduling functions was not previously proposed or

investigated.

3 Crawler Architecture

The incremental crawler architecture considered in our study has four components:

fetcher, extractor of URLs, uniqueness verifier, and scheduler [Henrique et al., 2011].

While our results can be applied to other crawler architectures, we here adopt this

architecture to give the reader a context about the problem addressed.

Figure 1 illustrates the crawl cycle. In step 1, the fetcher, which is the compo-

nent that sees the Web, receives from the scheduler a set of URLs to download. In

step 2, the extractor of URLs parses each downloaded page and obtains a set of new

URLs. In step 3, the uniqueness verifier checks each URL against the repository of

unique URLs. In step 4, the scheduler chooses a new set of URLs to be sent to the

fetcher, thus finishing one cycle. Considering cycle i, the fetcher locates and down-

loads webpages. It receives from the scheduler a set of candidate URLs to be crawled

and returns a set of URLs actually downloaded. The size of the set of candidate URLs

is defined by the amount of memory space available to the uniqueness verifier.

We here focus on the algorithm for scheduling webpage updates. We already

mentioned that there are many different policies in the literature to select the set of

candidates to be crawled from a given set of servers at each cycle. To select a good

crawling order there are two main issues: coverage, the fraction of desired pages that

the crawler downloads successfully; and freshness, the degree to which the down-

loaded pages remain up-to-date, relative to the current live web copies. As the amount
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Fig. 1 Web page crawling cycle.

of crawling resources is finite, there is a trade-off between coverage and freshness,

and no consensus on how to balance them. Olston and Najork [2010] argue that bal-

ancing the two objectives should be left as a business decision, and most prior work

focuses either on coverage or on freshness. This work is focused on freshness.

4 Genetic Programming for Incremental Crawling

Genetic Programming (GP) is a problem-solving technique based on principles of

biological inheritance and evolution of individuals [Koza, 1992]. Given an optimiza-

tion problem with a large space of solutions, it searches for a near-optimal solution by

combining evolutionary selection and genetic operations to create better performing

individuals in subsequent generations.

This section discusses the basic concepts related to GP (Section 4.1) and how this

technique was applied to our target problem (Section 4.2).

4.1 Basic Concepts of Genetic Programming

GP evolves a number of candidate solutions called individuals which are represented

in memory as binary trees with pre-defined maximum depth d. In a tree, each internal

node is a function, and each leaf (terminal) is either a variable or a constant. The

maximum number of nodes is determined by the depth of the tree. An example of

an individual represented by a tree structure is provided in Figure 2. In this example,

the tree represents the change probability function presented in the Equation 5 (see

Section 5.1).

The GP process starts with an initial population of Np randomly generated in-

dividuals. Each individual is evaluated by a fitness function and receives a fitness

value. This fitness function, whose definition depends on the problem specifities, is

used to guide the evolutionary process (e.g., to select only individuals that achieve

better fitness results). The individuals will evolve generation by generation through

reproduction, crossover, and mutation operations.

The reproduction operation consists in reproducing an individual of a generation

into the next. The mutation operation has the role of ensuring diversity in the popu-
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Fig. 2 Tree representing the individual 1− eλpt.

lation, and can be of two types: swap mutations, where randomly chosen subtrees of

the individual are swapped, and replacement mutations, where subtrees of the indi-

viduals are completely replaced. In the latter, a random node in the tree representing

an individual of the current generation is selected and replaced by a new randomly

created subtree, which is included in the new generation. The crossover operation al-

lows genetic content exchange between two individuals, the parents, selected among

the best individuals of the current generation. A random subtree is selected from each

parent. The two subtrees are swapped to build a new individual, which is included in

the next generation.

These operations are parameterized by: the reproduction rate, which is the per-

centage of elements that are copied to the next generation, chosen among the best

individuals according to the fitness function; the crossover rate, which is the percent-

age of elements that are used by the crossover operation; the replacement and swap

mutation rates, which are the percentages of elements that can be affected by replace-

ment and swap mutations; and the maximum crossover depth, which is the maximum

depth of trees given as input to the crossover operation.

At the end of the evolutionary process, a new population is created to replace

the current one. The process is repeated over many generations until the termination

criterion (e.g, a predefined maximum number of generationsNg or a problem-specific

success measure, such as an intended fitness value for a specific individual) is met.

4.2 Our Framework

We here apply GP to the problem of scheduling webpage updates, using it to derive

score functions that capture the likelihood that a page has been modified. Pages with

higher likelihood should receive higher scores, and thus higher priority in the schedul-

ing process. The GP process we use is adapted from the one applied in [da Costa Car-

valho et al., 2012] to learn how to mix a set of sources of relevance evidence in a

search engine at indexing time. Our framework, called GP4C – Genetic Program-

ming for Crawling, is presented in Listing 1. It is an iterative process with two phases:

training (lines 5–13) and validation (lines 14–16).

We build our training and validation sets considering a scenario where we train

with an initial set of pages and validate the results with a distinct set of pages. This

scenario is closer to the one found in large crawling tasks, such as when performing

a crawling to a world wide search engine. In this case, an initial set of pages to build
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Listing 1 Genetic Programming for Crawling (GP4C)

1 Let T be a training set of pages crawled in a given period ;
2 Let V be a validation set of pages crawled in a given period ;
3 Let Ng be the number of generations ;
4 Let Nb be the number of best individuals ;
5 P ← I n i t i a l random population of individuals ;
6 Bt ← ∅ ;
7 For each generation g of Ng generations do {
8 Ft ← ∅ ;
9 For each individual i ∈ P do

10 Ft ← Ft ∪ {g, i, fitness(i, T )} ;
11 Bt ← getBestIndividuals(Nb,Bt ∪ Ft) ;
12 P ← applyGeneticOperations(P ,Ft,Bt, g) ;
13 }
14 Bv ← ∅ ;
15 For each individual i ∈ Bt do
16 Bv ← Bv ∪ {i, fitness(i,V)} ;
17 BestIndividual ← applySelectionMethod (Bt ,Bv ) ;

the training set is crawled first, and then a second set of validation pages is crawled.

The experimental tests are performed by adopting the resulting function in a third set

of pages.

As shown in Listing 1, GP4C starts with the creation of an initial random pop-

ulation of individuals (line 5) that evolves generation by generation using genetic

operations (line 12). The process continues until the number of generations of the

evolutionary process reaches a maximum value given as input. Recall that, in the

training phase, a fitness function is applied to evaluate all individuals of each gener-

ation (lines 9–10), so that only the Nb fittest individuals, across all previous genera-

tions, are selected to continue evolving (line 11). After the last generation is created,

to avoid selecting individuals that work well in the training set but do not generalize

for different pages (a problem known as over-fitting), the validation phase is applied.

In this phase, the fitness function is also used, but this time over the validation set

(lines 15–16). Individuals that perform the best in this phase are selected as the final

scheduling solutions (line 17).

4.2.1 Individuals, Terminals and Functions

In GP4C , each individual represents a function that assigns a score to each page

when composing the schedule from the training set. Such score combines information

useful for estimating the likelihood of a given page being updated in a period of time,

taking into account its behavior in previous crawls. The training is performed in a

period of time we selected, and each individual is evaluated as being the function

to create the scheduling in the whole training period. Thus, in an individual (tree),

terminals contain features obtained from the pages that may help in characterizing

their updating behavior and thus can be useful as parameters of the score function.



A Genetic Programming Framework to Schedule Webpage Updates 9

In GP4C , we consider the values of the following features and constant values

as terminals1:

– n, the number of times that the page was visited;

– X , the number of times that the page changed in n visits;

– t, the number of cycles since the page was last visited;

– estimators of page change probability previously proposed in the literature and

further explained in Section 5.1: CG; NAD; SAD; AAD; GAD;

– constant values: 0.001; 0.01; 0.1; 0.5; 1; 10; 100; 1000.

As functions in the inner nodes, we use addition (+), subtraction (−), multiplica-

tion (∗), division (/), logarithm (log), exponentiation (pow), and the exponential func-

tion (exp). To ensure the closure property, we implement protected division and loga-

rithm, such that these operators return the default value 0 when their inputs are out of

their domains. Moreover, we use the genetic operators of reproduction, crossover and

(swap/replacement) mutation. In particular, for the crossover operation, the selection

of the parents is performed randomly among the top best individuals of the current

generation.

One possible individual – score function – is shown in Figure 2. This individual,

which represents the score function 1 − eλpt and is here referred to as i, might have

been generated after applying some genetic operation in previously generated indi-

viduals (line 12 of Listing 1) or might belong to the initial random population (line 5).

Let’s say i belongs to generation g of the GP process (g = 1 . . .Ng). Each individual

of this generation, including i, will first be evaluated according to its fitness (line 10).

Next, the Nb fittest individuals of all generations up to g will be selected (line 11)

to evolve into new individuals after genetic operations are applied on them. These

operations are performed over the corresponding trees, as described in Section 4. In-

dividual i might or might not be selected, depending on how its fitness compare to

the others, computed in the training set. For all selected individual (inserted into Bt
in line 11), a last step consists of computing their fitness values in the validation set

(line 17), and the final solution (score function) is selected considering the fitness in

both training and validation sets (line 18), as will be described in Section 4.2.3.

4.2.2 Fitness Function

In GP4C , the fitness function measures the quality of the ranking produced using a

given individual for the whole training period. To compute the fitness of an individual,

we take the score it produces for each page in the training set of each day, and generate

a schedule for the crawling to be performed on the next day. We here experiment with

two fitness functions: ChangeRate [Douglis et al., 1997] and NDCG - Normalized

Discounted Cumulative Gain [Järvelin and Kekäläinen, 2002].

ChangeRate was proposed specifically to assess the ability of a scheduling policy

to detect updates, thus being previously used with this goal in the literature. It is

defined as:

1 We note that in our preliminary version of this work [Santos et al., 2013], only n, X and t were used

as terminals.
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Ci =
Dc

i

Di

, (1)

where Dc
i is the number of webpages downloaded in the ith download cycle that

have changed, and Di is the total number of webpages downloaded in the cycle. The

intuition is that the higher the concentration of changed pages in a scheduled set, the

better the scheduling. Notice that the ChangeRate definition relies on determining the

number of pages to be scheduled and crawled.

Besides ChangeRate, we also propose the use of NDCG as fitness function. NDCG

was previously adopted as a function to measure the final quality of the ranking pro-

vided by search systems. To our knowledge, this is the first time it is used as a fitness

function to assert the quality of a scheduling.

To compute NDCG we need first to define DCG - Discounted Cumulative Gain,

which is based on the premise that highly relevant pages appearing lower in the result

list should be penalized as the graded relevance value is reduced logarithmically pro-

portional to the position of the result. The DCG accumulated at a particular position

k is given by:

DCG@k =

k∑
i=1

rel i

loge(i)
, (2)

where rel i ∈ {0, 1}.

As the resulting lists vary in length, the cumulative gain at each position for a

chosen value k should be normalized. This is done by sorting the freshness of a result

list by relk, producing the maximum possible DCG until position k, called ideal

DCG until that position (or IDCG@k ). The NDCG at position k is then defined as:

NDCG@k =
DCG@k

IDCG@k
· (3)

We argue that NDCG provides a better fitness function than ChangeRate, since

it takes into account not only the number of pages scheduled that were effectively

changed, but also the positions where those pages occur in the scheduling. Thus,

scheduling functions that place changed pages in the top of the schedule achieve

higher NDCG scores. Another advantage of NDCG is that the best functions are

selected regardless of the amount of pages effectively crawled. While a good function

according to ChangeRate may be bad if the crawler takes only a partial list of the

scheduling pages, this is not likely to occur when using functions selected according

to NDCG. This latter property is important in practice, since each scheduling may not

be completely executed by the crawler before a new scheduling starts. Thus a function

that concentrates important pages closer to the top of the scheduling should be scored

better than others. While NDCG gives higher scores to such functions, ChangeRate

ignores the ranking produced by the scheduler.

Note that both ChangeRate and NDCG are here used not only as fitness functions

but also as evaluation metrics, as further discussed in Section 5.2.
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4.2.3 Selection of the Best Individuals

We perform the validation step as proposed in [da Costa Carvalho et al., 2012]. The

best individuals are chosen by running the GP process with a set of distinct randomly

selected seeds. The whole GP process depends on the selection of the initial seed to

produce its results. To reduce the possible risks of finding a low performance local

best individual, we run N processes with distinct random seeds, and pick the best

individual among those generated by these N runs. We refer to this approach as

GP4CBest.

As in [de Almeida et al., 2007b], we also consider two other selection strategies

that are based on the average and the sum of the performances of each individual in

both training and validation sets, minus the standard deviation of such performance

when selecting best individuals. In [de Almeida et al., 2007b], the authors referred to

these measures as Avgσ and Sumσ. The individual with the highest value of Sumσ

(or Avgσ) is selected. We here refer to GP4C using these selection strategies as

GP4C Sum and GP4CAvg.

These specific selection strategies are useful to produce stronger and more stable

results when running a GP process.

5 Experimental Evaluation

Because of the very dynamic nature of the Web, a crawl simulation is the only way

to ensure that all policies are compared under the same conditions. To carry the sim-

ulations, we first built a dataset of webpage changes using data gathered from the

Web. Our evaluation is performed on a webpage dataset collected from the Brazilian

Web (.br domain) using the crawler presented in [Henrique et al., 2011], whose ar-

chitecture is described in Section 3. Table 1 summarizes our dataset, referred to as

BRDC’122. The dataset consists of a fixed set of webpages, which were crawled on

a daily basis during approximately two months (between September and November

2012).

Table 1 Overview of our dataset (after filtering errors).

BRDC’12

Monitoring period 57 days

Number of webpages 417,048

Number of websites 7,171

Minimum number of webpages/site 1

Maximum number of webpages/site 2,336

Average number of webpages/site 58.15

Percentage of downloads with errors 2.92

2 The BRDC’12 dataset is publicly available at http://www.latin.dcc.ufmg.br/brdc12.html.
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To build BRDC’12, we used as seeds around 15,000 URLs of the most popu-

lar Brazilian sites (under the .br domain) according to Alexa3. A breadth-first crawl

from these seeds gathered around 200 million URLs. We then selected a set of 10,000
websites using stratified random sampling, thus keeping the same distribution of the

number of webpages per site of the complete dataset. Next, for each selected site, we

chose the largest number of webpages that could be crawled in one day without vi-

olating politeness constraints. In total, we selected 3,059,698 webpages, which were

then daily monitored. The complete BRDC’12 data has about 1 Tb of data.

During the monitoring periods, our crawler ran from 0AM to 11PM, recollecting

each selected webpage every day, which allowed us to determine when each page was

modified. Accesses to the same site were equally spaced to avoid hitting a website

too often. We noted some download errors during monitoring periods, which might

be due to, for example, the page being removed, the website’s access permissions

(robots.txt) being changed, or the download time reaching a limit (30 seconds). We

removed from BRDC’12 all webpages with more than 2 errors.

Note that, in the remaining cases of errors, we cannot tell whether the page

changed on that particular day. We guess this information by analyzing the history

of changes of that page in the days preceding the error. Let us say that the download

of a page p failed on day d. We use the most frequent period without changes on p in

the first d−1 days to determine whether we should consider that p changed on day d.

As shown in Table 1, our filtered dataset contains over 400 thousand webpages,

which is a much larger number of pages than used by previous work [Tan and Mitra,

2010]. Note also that the errors that remain after filtering represent only 2.92% of all

downloads performed. Although these errors might somewhat impact the quantitative

results of each method, they should not significantly impact our conclusions as they

might affect all considered approaches.

5.1 Baselines

We compare GP4CBest, GP4C Sum and GP4CAvg with five estimators of page

change probability proposed in the literature. We refer to these baselines as CG, NAD,

SAD, AAD and GAD.

Given the number of visits n and the number of times X that a page p changed

in those n visits, the CG baseline, proposed by Cho and Garcia-Molina [2003], is

defined as :

CG = − log(
n−X + 0.5

n+ 0.5
)· (4)

The other four baselines were proposed by Tan and Mitra [2010]. In order to

compute the change frequency of the pages, they assume that each page p follows a

Poisson process with parameter λp. Considering T the time that the next change will

happen, the probability ϕ that the page will change in the interval (0, t] is calculated

as:

ϕ = Pr{T ≤ t} =

∫ t

0

fp(t)dt =

∫ t

0

λpe
−λptdt = 1− eλpt· (5)

3 http://www.alexa.com/topsites/countries/BR.
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Since ϕ depends on λp and time t, we set t to be the number of cycles since the

page was last downloaded, and compute λp using the change history of the pages:

λp =

n∑
i=1

wi · Ii(p),

where n is the number of times the page was downloaded so far, wi is a weight

associated with a change occurred in the ith download of the page (
∑n

i=1 wi = 1),

and Ii(p) is either 1 if page p changed in the ith download, or 0 otherwise.

The four baselines vary depending on how weights wi are computed. Tan and

Mitra [2010] proposed the following schemes:

– NAD (Nonadaptive): all changes are equally important (w1 = · · · = wn = 1
n
).

– SAD (Shortsighted adaptive): only the last change is important (w1=· · ·=wn−1 =
0, wn = 1).

– AAD (Arithmetically adaptive): more recent changes are more important, and

weights decrease according to an arithmetic progression (wi =
i∑
n
i=1

i
).

– GAD (Geometrically adaptive): as the previous scheme, but weights decrease

more quickly, following a geometric progression (wi =
2i−1

∑
n
i=1

2i−1 ).

We also consider two simpler approaches to build score functions, referred to as

Rand and Age. In Rand, the scores are randomly chosen, whereas in Age, they are

equal to the time t since the page was last visited (i.e., downloaded).

5.2 Experimental Methodology

We adopted a 5-fold cross validation. Four folds were equally divided into training

set and validation set, and the last fold was used as test set. The training set was used

to evolve the population in the GP process, and the validation set was used to choose

the best individuals (as discussed in Section 4.2.3), particularly to compute Avgσ
and Sumσ. The best individuals were evaluated using the test set. We repeated this

process 5 times, by shifting the folds used as training, validation and test sets, such

that each fold is used as test set once. Thus, we report average results for the 5 test

sets, along with corresponding 95% confidence intervals.

In order to evaluate the score functions and compute fitness values we simulate

a crawl using our dataset. Our simulation starts with a warm-up period W=2 days,

during which collected data is used to build basic statistics about each page. For each

day following warm-up, we apply our proposed score function and each baseline to

assign scores to each page. The download of the top-k pages with highest scores (i.e.,

most likely of having been modified) is then simulated by updating statistics of the

page such as number of visits (i.e., downloads), number of changes, etc. Specifically,

we use collected data to determine whether a page change should be detected on that

day.

We evaluate the score functions generated by our method as well as the base-

lines using both ChangeRate and NDCG, defined in Section 4.2.2. When evaluating

a scheduling, one must determine the number of pages that can be crawled on each



14 Aécio S. R. Santos et al.

day (k in our experiments). We set k equal to 5% of the total number of webpages in

the dataset. For each day, we compute ChangeRate and NDCG using the top-k pages

in the sorted list produced by each method. Similarly, during the learning process, the

fitness of the generated score functions are computed over the top-k pages. Whenever

the actual number of changed pages on a day is smaller than k, no evaluated algo-

rithm can reach a maximum ChangeRate. This particular detail may cause variations

in the ChangeRate obtained by a function when comparing results in distinct days.

This variation however does not affect our conclusions about the relative performance

of the methods.

Regarding parameterization of the GP framework, we set Np equal to 300 individ-

uals, created using the ramped half-and-half method [Koza, 1992]. Due to the stabil-

ity of results, we set Ng equal to 50 generations as termination criterion. We adopted

tournament selection of size 2 to select individuals to evolve and set the crossover,

reproduction, replacement mutation and swap mutation rates equal to 90%, 15%, 5%

and 5%, respectively. We set the maximum tree depth d to 10 and the maximum depth

for crossover to 9. During the evolution process, we kept the Nb = 50 best individu-

als discovered through all generations to the validation phase. We ran the GP process

using 5 random seed values.

5.3 Experimental Results

We now discuss the results produced by our GP4C framework and the baselines

using the BRDC’12 dataset.

We start by comparing our three strategies to select the best individuals, namely,

GP4CBest, GP4CAvg and GP4C Sum. Figures 3(a) and 3(b) show average Chang-

eRate and average NDCG (along with corresponding 95% confidence intervals) for

each download cycle (day), computed across all 5 folds. We here fix the evaluation

metric and objective function (fitness) as the same, that is, ChangeRate results are

obtained for score functions produced by optimizing ChangeRate, whereas NDCG

results are shown for score functions developed by optimizing NDCG. We compare

the use of different metrics as objective function at the end of this section.

Figure 3 shows that, for both metrics, all three strategies are very close to each

other. A pairwise t-test [Jain, 1991] indicated that all three methods are statistically

tied, with 95% confidence, for almost all days. One exception is GP4CBest, which,

in terms of ChangeRate, outperforms GP4CAvg in three days and GP4C Sum in

four days (with statistically significant differences). In terms of NDCG, GP4CBest

outperforms GP4CAvg and GP4C Sum in four and two days, respectively. There

are also a few days in which GP4CBest is slightly outperformed by GP4CAvg and

GP4C Sum (three and one days, respectively), but only in terms of ChangeRate.

We also note that the functions generated by GP4C are quite stable when chang-

ing the set of pages where they are applied. Indeed, the results obtained in the test

set are pretty close to the ones obtained in the training and validation sets (differ-

ences under 1%) in all folds, whereas differences across folds are also very small

(below 3%). These results indicate that GP4C has produced quite stable and generic

functions, which is one of the properties desired when applying machine learning so-



A Genetic Programming Framework to Schedule Webpage Updates 15

 0.6
 0.62
 0.64
 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84

 0  2  4  6  8  10  12  14  16

C
ha

ng
e 

R
at

e

Download Cycles (Days)

GP2C_Best GP2C_Sum GP2C_Avg

(a) Average ChangeRate

 0.6
 0.62
 0.64
 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84

 0  2  4  6  8  10  12  14  16

N
D

C
G

Download Cycles (Days)

GP2C_Best GP2C_Sum GP2C_Avg

(b) Average NDCG

Fig. 3 (Color online) Performance of three variations of GP4C in each download cycle (averages across

folds and 95% confidence intervals).

lutions to any problem. Considering overall results in both metrics, GP4CBest is the

best performer, and thus we focus on it in the rest of the paper.

One of the advantages of the GP framework is its ability to include new terminals

and features to improve the quality of the scheduling. In a preliminary version of

this work [Santos et al., 2013], we experimented with only three terminals, namely

the number of times that the page was visited (n), the number of times that the page

changed in those n visits (X), and the number of cycles since the last visit (t). We

here demonstrate the importance of the aforementioned property by extending this list

to include also the CG, NAD, SAD, AAD, and GAD estimators of the page change

probability as terminals.

Table 2 shows average ChangeRate and NDCG results, along with corresponding

95% confidence intervals, for our GP scheduling framework using only the basic

terminals and using all terminals available, referred to as GP4CBasic and GP4CAll ,

respectively. These averages were computed across all days. Once again, the results of

each evaluation metric were computed for score functions developed by optimizing
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the same metric. The table also shows results for the seven considered baselines:

Rand, Age, NAD, SAD, AAD, GAD, and CG.

Table 2 Overall performance of all methods across all download cycles (averages and 95% confidence

intervals; best results in bold)

Average ChangeRate

Rand Age NAD SAD AAD GAD CG GP4CBasic GP4CAll

0.1566 0.1753 0.7162 0.5451 0.6778 0.6535 0.6672 0.7164 0.7256

± ± ± ± ± ± ± ± ±

0.0019 0.0016 0.0033 0.0107 0.0071 0.0059 0.0036 0.0068 0.0061

Average NDCG

Rand Age NAD SAD AAD GAD CG GP4CBasic GP4CAll

0.1565 0.1754 0.7288 0.5674 0.6986 0.6769 0.6888 0.7287 0.7419

± ± ± ± ± ± ± ± ±

0.0018 0.0015 0.0033 0.0098 0.0062 0.0054 0.0037 0.0042 0.0077

As it can be seen, GP4CAll produces better results than GP4CBasic in both eval-

uation metrics. More importantly, our solution, even if using only the basic terminals,

outperforms all baselines. We note that these improvements are statistically signifi-

cant, with 95% confidence. Note also that, even though our GP4CBasic approach

uses the exact set of parameters used by the CG baseline [Cho and Garcia-Molina,

2003] (i.e., n,X, t), our method produces much better results, increasing the aver-

age ChangeRate from 0.64 to around 0.70, an improvement of around 10%, and the

average NDCG from 0.67 to 0.71, a 6% improvement.

The best baseline is NAD, followed by CG and AAD, whereas Rand and Age
produce much worse results. NAD uses a different set of parameters compared to

CG, which may provide more useful information about a page’s updating behavior.

Nevertheless, our approaches are still slightly better: GP4CBasic outperforms NAD

in average ChangeRate, with a statistically significant improvement of 2.4%. If all

terminals are used, our solution is statistically superior to NAD in terms of both

average ChangeRate and NDCG, with gains of 4.2% and 2.6%, respectively.

We also compare the performance of the methods on each download cycle. Fig-

ures 4(a) and 4(b) show the average ChangeRate and the average NDCG of each

method on each cycle. To improve the readability of the figure, we omit the curves

for the Rand and Age baselines, which are much worse than the other methods, as

well as confidence intervals. We also show results for GP4C only when using all

terminals (GP4CAll ).

We summarize the results in Figure 4 by counting the number of download cycles

when each method provided the best scheduling, according to one of the evalua-

tion metrics. Table 3 shows the number of cycles (out of a total of 55) in which our

solution outperformed each baseline (referred to as victories) as well as the num-

ber of cycles in which our solution was outperformed by a baseline (referred to as

losses). It shows results for both evaluation metrics as well as for both GP4CAll and

GP4CBasic . The number of statistical ties (with 95% confidence) are omitted as they

can be easily inferred. We focus on the most competitive baselines, omitting results

for Rand and Age, as both GP4CBasic and GP4CAll greatly outperformed them in
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Fig. 4 (Color online) Performance of various methods on each download cycle (averages across folds and

95% confidence intervals)

all download cycles. Similarly, Table 3 also shows, in parentheses, the relative dif-

ferences (improvements and losses) between our strategies and each baseline for the

cases of victories and losses.

Once again, we can see that GP4C is superior to all baselines in most of the days.

Focusing on the best baseline, NAD, we notice that GP4C achieves better average

ChangeRate results in 22 download cycles when using only the basic terminals, while

the use of the additional terminals raises the number of victories (in terms of this

metric) to 38. In terms of NDCG, the use of the additional terminals improves the

number of victories from 6 to 29.

The gains can also be assessed in terms of the performance gap between our

approaches and NAD. Table 3 shows that, when statistically significant, the average

improvements in ChangeRate and NDCG are 4.49% and 2.23%, respectively, if only

basic terminals are used, and reach 5.5% and 4.46% when all terminals are used.

Overall, despite a performance loss in one download cycle, our solution provides

statistically significant gains over NAD, even if only the basic terminals are used.
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Table 3 Number of victories and losses, in terms of both metrics, of our GP4C framework over each

baseline (relative differences in parentheses)

ChangeRate

GP4CBasic GP4CAll

Baseline # Victories #Losses #Victories #Losses

(% diff) (% diff) (% diff) (% diff)

NAD 3 (3.97%) 2 (-3.02%) 9 (3.54%) 1 (-6.36%)

AAD 11 (8.20%) 1 (-1.60%) 14 (9.04%) 1 (-1.19%)

GAD 15 (11.80%) 1 (-1.60%) 15 (13.18%) 1 (-1.19%)

CG 12 (8.50%) 0 16 (9.32%) 0

NDCG

GP4CBasic GP4CAll

Baseline # Victories #Losses #Victories #Losses

(% diff) (% diff) (% diff) (% diff)

NAD 0 2 (-0.83%) 9 (4.21%) 0

AAD 13 (6.21%) 3 (-2.10%) 14 (8.14%) 0

GAD 13 (10.23%) 2 (-1.67%) 15 (11.71%) 0

CG 15 (6.48%) 0 15 (8.35%) 0

These results illustrate the ability of our framework to take advantage of previous

proposals and to include new features into the scheduling task.

Considering the other baselines, specifically the more competitive CG, AAD and

GAD, GP4C , even if using only the basic terminals, produces statistically significant

improvements in the vast majority of the days. For example, considering ChangeRate,

GP4CBasic outperforms AAD, GAD, CG in 47, 49 and 50 download cycles, respec-

tively. The results in terms of NDCG are quite similar. When using all terminals,

the number of victories in both metrics remain roughly similar, but the performance

differences increase. We note that the only few download cycles in which GP4C is

statistically inferior to one of the baselines (at most 5 cycles) occur in the beginning

of the simulation: after the 6th cycle, our solution remains the best one in all succes-

sive download cycles. This result corroborates the flexibility of our framework as it is

able to produce results as good as, and often better than, all five baselines in the vast

majority of the cycles.

We also note that our GP4C framework can be used for better understanding

the scheduling problem. For example, our results reveal that quite simple functions

outperform the baselines. The best results were produced by functions that give more

importance to the number of cycles since the page was last visited (t) and to the

number of times it changed in the last visits (X). The small impact of n on the final

scores of such functions might be due to the period of crawling used for training being

only two months. For longer periods, n may become more important. Even though

experiments with longer periods are now unfeasible to us (as they require continuous

crawling), this result shows the ability of our method to adapt its functions to the

dataset given for training.

As example, a simple but effective function generated by our method is t ∗ X .

This function resulted in final performance superior to most of the baselines, with

average ChangeRate above 0.690. It was not the best function found by GP4C , but
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illustrates how the framework can be applied not only to derive good score functions,

but also to give insights about the most important parameters.

A final question is to check the possible advantages of using NDCG instead of

ChangeRate as the fitness function. The choice of NDCG as fitness function and also

as evaluation function is based on the observation that crawlers commonly may not

follow a scheduler up to its end, requesting and adopting sometimes a new scheduling

before the current one is completely executed. In such situations, we are interested

in schedulings that still perform well even if just a portion of them is executed. In

that case, optimizing NDCG might lead to more effective solutions as the metric

prioritizes functions that place changed pages in higher positions of the scheduling.

Recall that, up to this point, we have evaluated all methods in the top-k% of the

pages in the sorted list produced by each method (with k equal to 5%), simulating

a scenario in which the scheduling is interrupted after downloading those pages. To

assess the benefits of using NDCG as fitness function, we compare the performance

of the best score function obtained when using either metric as fitness, considering

smaller values of k. Note that, even though we evaluate both functions assuming

smaller values of k, they were calibrated assuming a fixed k=5%. In other words, the

score functions were learned assuming that 5% is the maximum fraction of pages that

can be downloaded in one cycle. Figure 5 presents average ChangeRate and NDCG

results, along with corresponding 95% confidence intervals, for a total number of

downloaded pages varying from 4 to 20 thousand, which corresponds to values of k
varying from 1 to 5%.

As we can see, the use of NDCG as fitness function produces statistically better

results (up to 4% improvements), compared to those produced when ChangeRate

is optimized. These improvements in the scheduling are observed in terms of both

evaluation metrics. Thus, the use of NDCG as fitness leads to more robust solutions,

particularly when the amount of resources dedicated to scheduling is too constrained,

leading to early interruptions in the execution.

6 Conclusions and Future Work

In this article, we have presented a GP framework to automatically generate score

functions to be used by schedulers of web crawlers to rank webpages according

to their likelihood of having been modified since they were last crawled. We have

extensively evaluated our framework, called GP4C , comparing it against various

baselines, including state-of-the-art page change probability estimators, using a web-

page dataset collected from the Brazilian Web. Our evaluation, which considered both

ChangeRate and NDCG as performance metrics, included several variations of our

framework built from different sets of terminals as well as fitness functions.

Our experimental results indicate that our best function, GP4CBest, is statisti-

cally superior to all baselines in most of the simulated download cycles, even when a

basic set of terminals is used. Further improvements, in both ChangeRate and NDCG,

are achieved when the set of terminals is extended to include the previously proposed

page change probability estimators. Our results also show that the use of NDCG as fit-

ness function, as opposed to ChangeRate, leads to statistically superior results, which
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Fig. 5 Average ChangeRate and NDCG for 4 to 20 thousand downloaded pages across all download

cycles, which corresponds to k varying from 1 to 5% in the top-k pages in the sorted list produced by each

method.

makes it a more robust approach, particularly when the schedulings are only partially

executed.

As future work, we plan to investigate the use of our GP4C framework to de-

rive functions that increase the chance of finding novel pages, thus giving priority to

coverage, as well as functions that balance the two main objectives of a scheduler,

freshness and coverage.
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